This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . The infimum of the distances to A is a real number. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | |- X = ( BaseSet ` U ) |
|
| minveco.m | |- M = ( -v ` U ) |
||
| minveco.n | |- N = ( normCV ` U ) |
||
| minveco.y | |- Y = ( BaseSet ` W ) |
||
| minveco.u | |- ( ph -> U e. CPreHilOLD ) |
||
| minveco.w | |- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
||
| minveco.a | |- ( ph -> A e. X ) |
||
| minveco.d | |- D = ( IndMet ` U ) |
||
| minveco.j | |- J = ( MetOpen ` D ) |
||
| minveco.r | |- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
||
| minveco.s | |- S = inf ( R , RR , < ) |
||
| minveco.f | |- ( ph -> F : NN --> Y ) |
||
| minveco.1 | |- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
||
| Assertion | minvecolem4c | |- ( ph -> S e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | |- X = ( BaseSet ` U ) |
|
| 2 | minveco.m | |- M = ( -v ` U ) |
|
| 3 | minveco.n | |- N = ( normCV ` U ) |
|
| 4 | minveco.y | |- Y = ( BaseSet ` W ) |
|
| 5 | minveco.u | |- ( ph -> U e. CPreHilOLD ) |
|
| 6 | minveco.w | |- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
|
| 7 | minveco.a | |- ( ph -> A e. X ) |
|
| 8 | minveco.d | |- D = ( IndMet ` U ) |
|
| 9 | minveco.j | |- J = ( MetOpen ` D ) |
|
| 10 | minveco.r | |- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
|
| 11 | minveco.s | |- S = inf ( R , RR , < ) |
|
| 12 | minveco.f | |- ( ph -> F : NN --> Y ) |
|
| 13 | minveco.1 | |- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
|
| 14 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 | |- ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) |
| 15 | 14 | simp1d | |- ( ph -> R C_ RR ) |
| 16 | 14 | simp2d | |- ( ph -> R =/= (/) ) |
| 17 | 0re | |- 0 e. RR |
|
| 18 | 14 | simp3d | |- ( ph -> A. w e. R 0 <_ w ) |
| 19 | breq1 | |- ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) |
|
| 20 | 19 | ralbidv | |- ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) |
| 21 | 20 | rspcev | |- ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) |
| 22 | 17 18 21 | sylancr | |- ( ph -> E. x e. RR A. w e. R x <_ w ) |
| 23 | infrecl | |- ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) -> inf ( R , RR , < ) e. RR ) |
|
| 24 | 15 16 22 23 | syl3anc | |- ( ph -> inf ( R , RR , < ) e. RR ) |
| 25 | 11 24 | eqeltrid | |- ( ph -> S e. RR ) |