This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of open sets of a metric space X is a topology on X . Remark in Kreyszig p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopnval.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | mopntopon | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnval.1 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | mopnval | |- ( D e. ( *Met ` X ) -> J = ( topGen ` ran ( ball ` D ) ) ) |
| 3 | blbas | |- ( D e. ( *Met ` X ) -> ran ( ball ` D ) e. TopBases ) |
|
| 4 | tgtopon | |- ( ran ( ball ` D ) e. TopBases -> ( topGen ` ran ( ball ` D ) ) e. ( TopOn ` U. ran ( ball ` D ) ) ) |
|
| 5 | 3 4 | syl | |- ( D e. ( *Met ` X ) -> ( topGen ` ran ( ball ` D ) ) e. ( TopOn ` U. ran ( ball ` D ) ) ) |
| 6 | unirnbl | |- ( D e. ( *Met ` X ) -> U. ran ( ball ` D ) = X ) |
|
| 7 | 6 | fveq2d | |- ( D e. ( *Met ` X ) -> ( TopOn ` U. ran ( ball ` D ) ) = ( TopOn ` X ) ) |
| 8 | 5 7 | eleqtrd | |- ( D e. ( *Met ` X ) -> ( topGen ` ran ( ball ` D ) ) e. ( TopOn ` X ) ) |
| 9 | 2 8 | eqeltrd | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |