This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of Kreyszig p. 58. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imsmet.1 | |- X = ( BaseSet ` U ) |
|
| imsmet.8 | |- D = ( IndMet ` U ) |
||
| Assertion | imsmet | |- ( U e. NrmCVec -> D e. ( Met ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsmet.1 | |- X = ( BaseSet ` U ) |
|
| 2 | imsmet.8 | |- D = ( IndMet ` U ) |
|
| 3 | fveq2 | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( IndMet ` U ) = ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 4 | fveq2 | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( BaseSet ` U ) = ( BaseSet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 5 | 1 4 | eqtrid | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> X = ( BaseSet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) |
| 6 | 5 | fveq2d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( Met ` X ) = ( Met ` ( BaseSet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 7 | 3 6 | eleq12d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( ( IndMet ` U ) e. ( Met ` X ) <-> ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) e. ( Met ` ( BaseSet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) ) ) |
| 8 | eqid | |- ( BaseSet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) = ( BaseSet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) |
|
| 9 | eqid | |- ( +v ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) = ( +v ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) |
|
| 10 | eqid | |- ( inv ` ( +v ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) = ( inv ` ( +v ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 11 | eqid | |- ( .sOLD ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) = ( .sOLD ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) |
|
| 12 | eqid | |- ( 0vec ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) = ( 0vec ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) |
|
| 13 | eqid | |- ( normCV ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) = ( normCV ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) |
|
| 14 | eqid | |- ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) = ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) |
|
| 15 | elimnvu | |- if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) e. NrmCVec |
|
| 16 | 8 9 10 11 12 13 14 15 | imsmetlem | |- ( IndMet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) e. ( Met ` ( BaseSet ` if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) ) ) |
| 17 | 7 16 | dedth | |- ( U e. NrmCVec -> ( IndMet ` U ) e. ( Met ` X ) ) |
| 18 | 2 17 | eqeltrid | |- ( U e. NrmCVec -> D e. ( Met ` X ) ) |