This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005) (Proof shortened by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2clim.1 | |- Z = ( ZZ>= ` M ) |
|
| 2clim.2 | |- ( ph -> M e. ZZ ) |
||
| 2clim.3 | |- ( ph -> G e. V ) |
||
| 2clim.5 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
||
| 2clim.6 | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < x ) |
||
| 2clim.7 | |- ( ph -> F ~~> A ) |
||
| Assertion | 2clim | |- ( ph -> G ~~> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2clim.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | 2clim.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | 2clim.3 | |- ( ph -> G e. V ) |
|
| 4 | 2clim.5 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
|
| 5 | 2clim.6 | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < x ) |
|
| 6 | 2clim.7 | |- ( ph -> F ~~> A ) |
|
| 7 | rphalfcl | |- ( y e. RR+ -> ( y / 2 ) e. RR+ ) |
|
| 8 | breq2 | |- ( x = ( y / 2 ) -> ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) ) ) |
|
| 9 | 8 | rexralbidv | |- ( x = ( y / 2 ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) ) ) |
| 10 | 9 | rspccva | |- ( ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < x /\ ( y / 2 ) e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) ) |
| 11 | 5 7 10 | syl2an | |- ( ( ph /\ y e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) ) |
| 12 | 2 | adantr | |- ( ( ph /\ y e. RR+ ) -> M e. ZZ ) |
| 13 | 7 | adantl | |- ( ( ph /\ y e. RR+ ) -> ( y / 2 ) e. RR+ ) |
| 14 | eqidd | |- ( ( ( ph /\ y e. RR+ ) /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
|
| 15 | 6 | adantr | |- ( ( ph /\ y e. RR+ ) -> F ~~> A ) |
| 16 | 1 12 13 14 15 | climi | |- ( ( ph /\ y e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) |
| 17 | 1 | rexanuz2 | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) <-> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) ) |
| 18 | 11 16 17 | sylanbrc | |- ( ( ph /\ y e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) ) |
| 19 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 20 | an12 | |- ( ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) <-> ( ( F ` k ) e. CC /\ ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) ) |
|
| 21 | simprr | |- ( ( ( ph /\ y e. RR+ ) /\ ( k e. Z /\ ( F ` k ) e. CC ) ) -> ( F ` k ) e. CC ) |
|
| 22 | 4 | ad2ant2r | |- ( ( ( ph /\ y e. RR+ ) /\ ( k e. Z /\ ( F ` k ) e. CC ) ) -> ( G ` k ) e. CC ) |
| 23 | 21 22 | abssubd | |- ( ( ( ph /\ y e. RR+ ) /\ ( k e. Z /\ ( F ` k ) e. CC ) ) -> ( abs ` ( ( F ` k ) - ( G ` k ) ) ) = ( abs ` ( ( G ` k ) - ( F ` k ) ) ) ) |
| 24 | 23 | breq1d | |- ( ( ( ph /\ y e. RR+ ) /\ ( k e. Z /\ ( F ` k ) e. CC ) ) -> ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) <-> ( abs ` ( ( G ` k ) - ( F ` k ) ) ) < ( y / 2 ) ) ) |
| 25 | 24 | anbi1d | |- ( ( ( ph /\ y e. RR+ ) /\ ( k e. Z /\ ( F ` k ) e. CC ) ) -> ( ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) <-> ( ( abs ` ( ( G ` k ) - ( F ` k ) ) ) < ( y / 2 ) /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) ) |
| 26 | climcl | |- ( F ~~> A -> A e. CC ) |
|
| 27 | 6 26 | syl | |- ( ph -> A e. CC ) |
| 28 | 27 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( k e. Z /\ ( F ` k ) e. CC ) ) -> A e. CC ) |
| 29 | rpre | |- ( y e. RR+ -> y e. RR ) |
|
| 30 | 29 | ad2antlr | |- ( ( ( ph /\ y e. RR+ ) /\ ( k e. Z /\ ( F ` k ) e. CC ) ) -> y e. RR ) |
| 31 | abs3lem | |- ( ( ( ( G ` k ) e. CC /\ A e. CC ) /\ ( ( F ` k ) e. CC /\ y e. RR ) ) -> ( ( ( abs ` ( ( G ` k ) - ( F ` k ) ) ) < ( y / 2 ) /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) -> ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
|
| 32 | 22 28 21 30 31 | syl22anc | |- ( ( ( ph /\ y e. RR+ ) /\ ( k e. Z /\ ( F ` k ) e. CC ) ) -> ( ( ( abs ` ( ( G ` k ) - ( F ` k ) ) ) < ( y / 2 ) /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) -> ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 33 | 25 32 | sylbid | |- ( ( ( ph /\ y e. RR+ ) /\ ( k e. Z /\ ( F ` k ) e. CC ) ) -> ( ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) -> ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 34 | 33 | anassrs | |- ( ( ( ( ph /\ y e. RR+ ) /\ k e. Z ) /\ ( F ` k ) e. CC ) -> ( ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) -> ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 35 | 34 | expimpd | |- ( ( ( ph /\ y e. RR+ ) /\ k e. Z ) -> ( ( ( F ` k ) e. CC /\ ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 36 | 20 35 | biimtrid | |- ( ( ( ph /\ y e. RR+ ) /\ k e. Z ) -> ( ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 37 | 19 36 | sylan2 | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 38 | 37 | anassrs | |- ( ( ( ( ph /\ y e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) -> ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 39 | 38 | ralimdva | |- ( ( ( ph /\ y e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 40 | 39 | reximdva | |- ( ( ph /\ y e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( abs ` ( ( F ` k ) - ( G ` k ) ) ) < ( y / 2 ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( y / 2 ) ) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 41 | 18 40 | mpd | |- ( ( ph /\ y e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y ) |
| 42 | 41 | ralrimiva | |- ( ph -> A. y e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y ) |
| 43 | eqidd | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( G ` k ) ) |
|
| 44 | 1 2 3 43 27 4 | clim2c | |- ( ph -> ( G ~~> A <-> A. y e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 45 | 42 44 | mpbird | |- ( ph -> G ~~> A ) |