This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An absolutely convergent series is convergent. (Contributed by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abscvgcvg.1 | |- Z = ( ZZ>= ` M ) |
|
| abscvgcvg.2 | |- ( ph -> M e. ZZ ) |
||
| abscvgcvg.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( abs ` ( G ` k ) ) ) |
||
| abscvgcvg.4 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
||
| abscvgcvg.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| Assertion | abscvgcvg | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscvgcvg.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | abscvgcvg.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | abscvgcvg.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( abs ` ( G ` k ) ) ) |
|
| 4 | abscvgcvg.4 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
|
| 5 | abscvgcvg.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 6 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 7 | 2 6 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 8 | 7 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 9 | 4 | abscld | |- ( ( ph /\ k e. Z ) -> ( abs ` ( G ` k ) ) e. RR ) |
| 10 | 3 9 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 11 | 1red | |- ( ph -> 1 e. RR ) |
|
| 12 | 1 | eleq2i | |- ( k e. Z <-> k e. ( ZZ>= ` M ) ) |
| 13 | 3 | eqcomd | |- ( ( ph /\ k e. Z ) -> ( abs ` ( G ` k ) ) = ( F ` k ) ) |
| 14 | 9 13 | eqled | |- ( ( ph /\ k e. Z ) -> ( abs ` ( G ` k ) ) <_ ( F ` k ) ) |
| 15 | 10 | recnd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 16 | 15 | mullidd | |- ( ( ph /\ k e. Z ) -> ( 1 x. ( F ` k ) ) = ( F ` k ) ) |
| 17 | 14 16 | breqtrrd | |- ( ( ph /\ k e. Z ) -> ( abs ` ( G ` k ) ) <_ ( 1 x. ( F ` k ) ) ) |
| 18 | 12 17 | sylan2br | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( abs ` ( G ` k ) ) <_ ( 1 x. ( F ` k ) ) ) |
| 19 | 1 8 10 4 5 11 18 | cvgcmpce | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |