This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express "the sum of A ( j , k ) over the triangular region 0 <_ j , 0 <_ k , j + k <_ N ". (Contributed by Mario Carneiro, 21-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsum0diag2.1 | |- ( x = k -> B = A ) |
|
| fsum0diag2.2 | |- ( x = ( k - j ) -> B = C ) |
||
| fsum0diag2.3 | |- ( ( ph /\ ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) ) -> A e. CC ) |
||
| Assertion | fsum0diag2 | |- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) A = sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum0diag2.1 | |- ( x = k -> B = A ) |
|
| 2 | fsum0diag2.2 | |- ( x = ( k - j ) -> B = C ) |
|
| 3 | fsum0diag2.3 | |- ( ( ph /\ ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) ) -> A e. CC ) |
|
| 4 | fznn0sub2 | |- ( n e. ( 0 ... ( N - j ) ) -> ( ( N - j ) - n ) e. ( 0 ... ( N - j ) ) ) |
|
| 5 | 4 | ad2antll | |- ( ( ph /\ ( j e. ( 0 ... N ) /\ n e. ( 0 ... ( N - j ) ) ) ) -> ( ( N - j ) - n ) e. ( 0 ... ( N - j ) ) ) |
| 6 | 3 | expr | |- ( ( ph /\ j e. ( 0 ... N ) ) -> ( k e. ( 0 ... ( N - j ) ) -> A e. CC ) ) |
| 7 | 6 | ralrimiv | |- ( ( ph /\ j e. ( 0 ... N ) ) -> A. k e. ( 0 ... ( N - j ) ) A e. CC ) |
| 8 | 1 | eleq1d | |- ( x = k -> ( B e. CC <-> A e. CC ) ) |
| 9 | 8 | cbvralvw | |- ( A. x e. ( 0 ... ( N - j ) ) B e. CC <-> A. k e. ( 0 ... ( N - j ) ) A e. CC ) |
| 10 | 7 9 | sylibr | |- ( ( ph /\ j e. ( 0 ... N ) ) -> A. x e. ( 0 ... ( N - j ) ) B e. CC ) |
| 11 | 10 | adantrr | |- ( ( ph /\ ( j e. ( 0 ... N ) /\ n e. ( 0 ... ( N - j ) ) ) ) -> A. x e. ( 0 ... ( N - j ) ) B e. CC ) |
| 12 | nfcsb1v | |- F/_ x [_ ( ( N - j ) - n ) / x ]_ B |
|
| 13 | 12 | nfel1 | |- F/ x [_ ( ( N - j ) - n ) / x ]_ B e. CC |
| 14 | csbeq1a | |- ( x = ( ( N - j ) - n ) -> B = [_ ( ( N - j ) - n ) / x ]_ B ) |
|
| 15 | 14 | eleq1d | |- ( x = ( ( N - j ) - n ) -> ( B e. CC <-> [_ ( ( N - j ) - n ) / x ]_ B e. CC ) ) |
| 16 | 13 15 | rspc | |- ( ( ( N - j ) - n ) e. ( 0 ... ( N - j ) ) -> ( A. x e. ( 0 ... ( N - j ) ) B e. CC -> [_ ( ( N - j ) - n ) / x ]_ B e. CC ) ) |
| 17 | 5 11 16 | sylc | |- ( ( ph /\ ( j e. ( 0 ... N ) /\ n e. ( 0 ... ( N - j ) ) ) ) -> [_ ( ( N - j ) - n ) / x ]_ B e. CC ) |
| 18 | 17 | fsum0diag | |- ( ph -> sum_ j e. ( 0 ... N ) sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( N - j ) - n ) / x ]_ B = sum_ n e. ( 0 ... N ) sum_ j e. ( 0 ... ( N - n ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 19 | nfcsb1v | |- F/_ x [_ k / x ]_ B |
|
| 20 | 19 | nfel1 | |- F/ x [_ k / x ]_ B e. CC |
| 21 | csbeq1a | |- ( x = k -> B = [_ k / x ]_ B ) |
|
| 22 | 21 | eleq1d | |- ( x = k -> ( B e. CC <-> [_ k / x ]_ B e. CC ) ) |
| 23 | 20 22 | rspc | |- ( k e. ( 0 ... ( N - j ) ) -> ( A. x e. ( 0 ... ( N - j ) ) B e. CC -> [_ k / x ]_ B e. CC ) ) |
| 24 | 10 23 | mpan9 | |- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ k e. ( 0 ... ( N - j ) ) ) -> [_ k / x ]_ B e. CC ) |
| 25 | csbeq1 | |- ( k = ( ( 0 + ( N - j ) ) - n ) -> [_ k / x ]_ B = [_ ( ( 0 + ( N - j ) ) - n ) / x ]_ B ) |
|
| 26 | 24 25 | fsumrev2 | |- ( ( ph /\ j e. ( 0 ... N ) ) -> sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( 0 + ( N - j ) ) - n ) / x ]_ B ) |
| 27 | elfz3nn0 | |- ( j e. ( 0 ... N ) -> N e. NN0 ) |
|
| 28 | 27 | ad2antlr | |- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> N e. NN0 ) |
| 29 | elfzelz | |- ( j e. ( 0 ... N ) -> j e. ZZ ) |
|
| 30 | 29 | ad2antlr | |- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> j e. ZZ ) |
| 31 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 32 | zcn | |- ( j e. ZZ -> j e. CC ) |
|
| 33 | subcl | |- ( ( N e. CC /\ j e. CC ) -> ( N - j ) e. CC ) |
|
| 34 | 31 32 33 | syl2an | |- ( ( N e. NN0 /\ j e. ZZ ) -> ( N - j ) e. CC ) |
| 35 | 28 30 34 | syl2anc | |- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> ( N - j ) e. CC ) |
| 36 | addlid | |- ( ( N - j ) e. CC -> ( 0 + ( N - j ) ) = ( N - j ) ) |
|
| 37 | 35 36 | syl | |- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> ( 0 + ( N - j ) ) = ( N - j ) ) |
| 38 | 37 | oveq1d | |- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> ( ( 0 + ( N - j ) ) - n ) = ( ( N - j ) - n ) ) |
| 39 | 38 | csbeq1d | |- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ n e. ( 0 ... ( N - j ) ) ) -> [_ ( ( 0 + ( N - j ) ) - n ) / x ]_ B = [_ ( ( N - j ) - n ) / x ]_ B ) |
| 40 | 39 | sumeq2dv | |- ( ( ph /\ j e. ( 0 ... N ) ) -> sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( 0 + ( N - j ) ) - n ) / x ]_ B = sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 41 | 26 40 | eqtrd | |- ( ( ph /\ j e. ( 0 ... N ) ) -> sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 42 | 41 | sumeq2dv | |- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ j e. ( 0 ... N ) sum_ n e. ( 0 ... ( N - j ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 43 | elfz3nn0 | |- ( n e. ( 0 ... N ) -> N e. NN0 ) |
|
| 44 | 43 | adantl | |- ( ( ph /\ n e. ( 0 ... N ) ) -> N e. NN0 ) |
| 45 | addlid | |- ( N e. CC -> ( 0 + N ) = N ) |
|
| 46 | 44 31 45 | 3syl | |- ( ( ph /\ n e. ( 0 ... N ) ) -> ( 0 + N ) = N ) |
| 47 | 46 | oveq1d | |- ( ( ph /\ n e. ( 0 ... N ) ) -> ( ( 0 + N ) - n ) = ( N - n ) ) |
| 48 | 47 | oveq2d | |- ( ( ph /\ n e. ( 0 ... N ) ) -> ( 0 ... ( ( 0 + N ) - n ) ) = ( 0 ... ( N - n ) ) ) |
| 49 | 47 | oveq1d | |- ( ( ph /\ n e. ( 0 ... N ) ) -> ( ( ( 0 + N ) - n ) - j ) = ( ( N - n ) - j ) ) |
| 50 | 49 | adantr | |- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> ( ( ( 0 + N ) - n ) - j ) = ( ( N - n ) - j ) ) |
| 51 | 43 | ad2antlr | |- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> N e. NN0 ) |
| 52 | elfzelz | |- ( n e. ( 0 ... N ) -> n e. ZZ ) |
|
| 53 | 52 | ad2antlr | |- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> n e. ZZ ) |
| 54 | elfzelz | |- ( j e. ( 0 ... ( N - n ) ) -> j e. ZZ ) |
|
| 55 | 54 | adantl | |- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> j e. ZZ ) |
| 56 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 57 | sub32 | |- ( ( N e. CC /\ n e. CC /\ j e. CC ) -> ( ( N - n ) - j ) = ( ( N - j ) - n ) ) |
|
| 58 | 31 56 32 57 | syl3an | |- ( ( N e. NN0 /\ n e. ZZ /\ j e. ZZ ) -> ( ( N - n ) - j ) = ( ( N - j ) - n ) ) |
| 59 | 51 53 55 58 | syl3anc | |- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> ( ( N - n ) - j ) = ( ( N - j ) - n ) ) |
| 60 | 50 59 | eqtrd | |- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> ( ( ( 0 + N ) - n ) - j ) = ( ( N - j ) - n ) ) |
| 61 | 60 | csbeq1d | |- ( ( ( ph /\ n e. ( 0 ... N ) ) /\ j e. ( 0 ... ( N - n ) ) ) -> [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B = [_ ( ( N - j ) - n ) / x ]_ B ) |
| 62 | 48 61 | sumeq12rdv | |- ( ( ph /\ n e. ( 0 ... N ) ) -> sum_ j e. ( 0 ... ( ( 0 + N ) - n ) ) [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B = sum_ j e. ( 0 ... ( N - n ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 63 | 62 | sumeq2dv | |- ( ph -> sum_ n e. ( 0 ... N ) sum_ j e. ( 0 ... ( ( 0 + N ) - n ) ) [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B = sum_ n e. ( 0 ... N ) sum_ j e. ( 0 ... ( N - n ) ) [_ ( ( N - j ) - n ) / x ]_ B ) |
| 64 | 18 42 63 | 3eqtr4d | |- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ n e. ( 0 ... N ) sum_ j e. ( 0 ... ( ( 0 + N ) - n ) ) [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B ) |
| 65 | fzfid | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( 0 ... k ) e. Fin ) |
|
| 66 | elfzuz3 | |- ( j e. ( 0 ... k ) -> k e. ( ZZ>= ` j ) ) |
|
| 67 | 66 | adantl | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> k e. ( ZZ>= ` j ) ) |
| 68 | elfzuz3 | |- ( k e. ( 0 ... N ) -> N e. ( ZZ>= ` k ) ) |
|
| 69 | 68 | adantl | |- ( ( ph /\ k e. ( 0 ... N ) ) -> N e. ( ZZ>= ` k ) ) |
| 70 | 69 | adantr | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> N e. ( ZZ>= ` k ) ) |
| 71 | elfzuzb | |- ( k e. ( j ... N ) <-> ( k e. ( ZZ>= ` j ) /\ N e. ( ZZ>= ` k ) ) ) |
|
| 72 | 67 70 71 | sylanbrc | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> k e. ( j ... N ) ) |
| 73 | elfzelz | |- ( j e. ( 0 ... k ) -> j e. ZZ ) |
|
| 74 | 73 | adantl | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> j e. ZZ ) |
| 75 | elfzel2 | |- ( k e. ( 0 ... N ) -> N e. ZZ ) |
|
| 76 | 75 | ad2antlr | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> N e. ZZ ) |
| 77 | elfzelz | |- ( k e. ( 0 ... N ) -> k e. ZZ ) |
|
| 78 | 77 | ad2antlr | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> k e. ZZ ) |
| 79 | fzsubel | |- ( ( ( j e. ZZ /\ N e. ZZ ) /\ ( k e. ZZ /\ j e. ZZ ) ) -> ( k e. ( j ... N ) <-> ( k - j ) e. ( ( j - j ) ... ( N - j ) ) ) ) |
|
| 80 | 74 76 78 74 79 | syl22anc | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ( k e. ( j ... N ) <-> ( k - j ) e. ( ( j - j ) ... ( N - j ) ) ) ) |
| 81 | 72 80 | mpbid | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ( k - j ) e. ( ( j - j ) ... ( N - j ) ) ) |
| 82 | subid | |- ( j e. CC -> ( j - j ) = 0 ) |
|
| 83 | 74 32 82 | 3syl | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ( j - j ) = 0 ) |
| 84 | 83 | oveq1d | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ( ( j - j ) ... ( N - j ) ) = ( 0 ... ( N - j ) ) ) |
| 85 | 81 84 | eleqtrd | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ( k - j ) e. ( 0 ... ( N - j ) ) ) |
| 86 | simpll | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> ph ) |
|
| 87 | fzss2 | |- ( N e. ( ZZ>= ` k ) -> ( 0 ... k ) C_ ( 0 ... N ) ) |
|
| 88 | 69 87 | syl | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( 0 ... k ) C_ ( 0 ... N ) ) |
| 89 | 88 | sselda | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> j e. ( 0 ... N ) ) |
| 90 | 86 89 10 | syl2anc | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> A. x e. ( 0 ... ( N - j ) ) B e. CC ) |
| 91 | nfcsb1v | |- F/_ x [_ ( k - j ) / x ]_ B |
|
| 92 | 91 | nfel1 | |- F/ x [_ ( k - j ) / x ]_ B e. CC |
| 93 | csbeq1a | |- ( x = ( k - j ) -> B = [_ ( k - j ) / x ]_ B ) |
|
| 94 | 93 | eleq1d | |- ( x = ( k - j ) -> ( B e. CC <-> [_ ( k - j ) / x ]_ B e. CC ) ) |
| 95 | 92 94 | rspc | |- ( ( k - j ) e. ( 0 ... ( N - j ) ) -> ( A. x e. ( 0 ... ( N - j ) ) B e. CC -> [_ ( k - j ) / x ]_ B e. CC ) ) |
| 96 | 85 90 95 | sylc | |- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ j e. ( 0 ... k ) ) -> [_ ( k - j ) / x ]_ B e. CC ) |
| 97 | 65 96 | fsumcl | |- ( ( ph /\ k e. ( 0 ... N ) ) -> sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B e. CC ) |
| 98 | oveq2 | |- ( k = ( ( 0 + N ) - n ) -> ( 0 ... k ) = ( 0 ... ( ( 0 + N ) - n ) ) ) |
|
| 99 | oveq1 | |- ( k = ( ( 0 + N ) - n ) -> ( k - j ) = ( ( ( 0 + N ) - n ) - j ) ) |
|
| 100 | 99 | csbeq1d | |- ( k = ( ( 0 + N ) - n ) -> [_ ( k - j ) / x ]_ B = [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B ) |
| 101 | 100 | adantr | |- ( ( k = ( ( 0 + N ) - n ) /\ j e. ( 0 ... k ) ) -> [_ ( k - j ) / x ]_ B = [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B ) |
| 102 | 98 101 | sumeq12dv | |- ( k = ( ( 0 + N ) - n ) -> sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B = sum_ j e. ( 0 ... ( ( 0 + N ) - n ) ) [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B ) |
| 103 | 97 102 | fsumrev2 | |- ( ph -> sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B = sum_ n e. ( 0 ... N ) sum_ j e. ( 0 ... ( ( 0 + N ) - n ) ) [_ ( ( ( 0 + N ) - n ) - j ) / x ]_ B ) |
| 104 | 64 103 | eqtr4d | |- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B ) |
| 105 | vex | |- k e. _V |
|
| 106 | 105 1 | csbie | |- [_ k / x ]_ B = A |
| 107 | 106 | a1i | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> [_ k / x ]_ B = A ) |
| 108 | 107 | sumeq2dv | |- ( j e. ( 0 ... N ) -> sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ k e. ( 0 ... ( N - j ) ) A ) |
| 109 | 108 | sumeq2i | |- sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) [_ k / x ]_ B = sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) A |
| 110 | ovex | |- ( k - j ) e. _V |
|
| 111 | 110 2 | csbie | |- [_ ( k - j ) / x ]_ B = C |
| 112 | 111 | a1i | |- ( ( k e. ( 0 ... N ) /\ j e. ( 0 ... k ) ) -> [_ ( k - j ) / x ]_ B = C ) |
| 113 | 112 | sumeq2dv | |- ( k e. ( 0 ... N ) -> sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B = sum_ j e. ( 0 ... k ) C ) |
| 114 | 113 | sumeq2i | |- sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) [_ ( k - j ) / x ]_ B = sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) C |
| 115 | 104 109 114 | 3eqtr3g | |- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) A = sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... k ) C ) |