This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mertens' theorem. If A ( j ) is an absolutely convergent series and B ( k ) is convergent, then ( sum_ j e. NN0 A ( j ) x. sum_ k e. NN0 B ( k ) ) = sum_ k e. NN0 sum_ j e. ( 0 ... k ) ( A ( j ) x. B ( k - j ) ) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem . (Contributed by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mertens.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) | |
| mertens.2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) | ||
| mertens.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | ||
| mertens.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) | ||
| mertens.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) | ||
| mertens.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) | ||
| mertens.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) | ||
| mertens.8 | ⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) | ||
| Assertion | mertens | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( Σ 𝑗 ∈ ℕ0 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mertens.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) | |
| 2 | mertens.2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) | |
| 3 | mertens.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 4 | mertens.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) | |
| 5 | mertens.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) | |
| 6 | mertens.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) | |
| 7 | mertens.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) | |
| 8 | mertens.8 | ⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) | |
| 9 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 10 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 11 | seqex | ⊢ seq 0 ( + , 𝐻 ) ∈ V | |
| 12 | 11 | a1i | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ V ) |
| 13 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) | |
| 14 | simpl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝜑 ) | |
| 15 | elfznn0 | ⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → 𝑗 ∈ ℕ0 ) | |
| 16 | 14 15 3 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝐴 ∈ ℂ ) |
| 17 | fveq2 | ⊢ ( 𝑖 = ( 𝑘 − 𝑗 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑖 = ( 𝑘 − 𝑗 ) → ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ↔ ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) ) |
| 19 | 4 5 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 20 | 19 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 21 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑖 ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑘 = 𝑖 → ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) ) |
| 23 | 22 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ℕ0 ( 𝐺 ‘ 𝑘 ) ∈ ℂ ↔ ∀ 𝑖 ∈ ℕ0 ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 24 | 20 23 | sylib | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 26 | fznn0sub | ⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → ( 𝑘 − 𝑗 ) ∈ ℕ0 ) | |
| 27 | 26 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑗 ) ∈ ℕ0 ) |
| 28 | 18 25 27 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
| 29 | 16 28 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
| 30 | 13 29 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
| 31 | 6 30 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) ∈ ℂ ) |
| 32 | 9 10 31 | serf | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) : ℕ0 ⟶ ℂ ) |
| 33 | 32 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ∈ ℂ ) |
| 34 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
| 35 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) |
| 36 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 37 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 38 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 39 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 40 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) |
| 41 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 42 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 43 | fveq2 | ⊢ ( 𝑙 = 𝑘 → ( 𝐺 ‘ 𝑙 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 44 | 43 | cbvsumv | ⊢ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑘 ) |
| 45 | fvoveq1 | ⊢ ( 𝑖 = 𝑛 → ( ℤ≥ ‘ ( 𝑖 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) | |
| 46 | 45 | sumeq1d | ⊢ ( 𝑖 = 𝑛 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 47 | 44 46 | eqtrid | ⊢ ( 𝑖 = 𝑛 → Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 48 | 47 | fveq2d | ⊢ ( 𝑖 = 𝑛 → ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 49 | 48 | eqeq2d | ⊢ ( 𝑖 = 𝑛 → ( 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) ↔ 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 50 | 49 | cbvrexvw | ⊢ ( ∃ 𝑖 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 51 | eqeq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ↔ 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) | |
| 52 | 51 | rexbidv | ⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 53 | 50 52 | bitrid | ⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑖 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 54 | 53 | cbvabv | ⊢ { 𝑢 ∣ ∃ 𝑖 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) } = { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } |
| 55 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) ) | |
| 56 | 55 | cbvsumv | ⊢ Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) = Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) |
| 57 | 56 | oveq1i | ⊢ ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) = ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) |
| 58 | 57 | oveq2i | ⊢ ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) = ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) |
| 59 | 58 | breq2i | ⊢ ( ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) |
| 60 | fveq2 | ⊢ ( 𝑖 = 𝑘 → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 61 | 60 | cbvsumv | ⊢ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑘 ) |
| 62 | fvoveq1 | ⊢ ( 𝑢 = 𝑛 → ( ℤ≥ ‘ ( 𝑢 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) | |
| 63 | 62 | sumeq1d | ⊢ ( 𝑢 = 𝑛 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 64 | 61 63 | eqtrid | ⊢ ( 𝑢 = 𝑛 → Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 65 | 64 | fveq2d | ⊢ ( 𝑢 = 𝑛 → ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 66 | 65 | breq1d | ⊢ ( 𝑢 = 𝑛 → ( ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 67 | 59 66 | bitrid | ⊢ ( 𝑢 = 𝑛 → ( ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 68 | 67 | cbvralvw | ⊢ ( ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) |
| 69 | 68 | anbi2i | ⊢ ( ( 𝑠 ∈ ℕ ∧ ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ) ↔ ( 𝑠 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 70 | 34 35 36 37 38 39 40 41 42 54 69 | mertenslem2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) |
| 71 | eluznn0 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ) → 𝑚 ∈ ℕ0 ) | |
| 72 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 0 ... 𝑚 ) ∈ Fin ) | |
| 73 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → 𝜑 ) | |
| 74 | elfznn0 | ⊢ ( 𝑗 ∈ ( 0 ... 𝑚 ) → 𝑗 ∈ ℕ0 ) | |
| 75 | 74 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → 𝑗 ∈ ℕ0 ) |
| 76 | 9 10 4 5 8 | isumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
| 77 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
| 78 | 1 3 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 79 | 77 78 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
| 80 | 73 75 79 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
| 81 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 0 ... ( 𝑚 − 𝑗 ) ) ∈ Fin ) | |
| 82 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝜑 ) | |
| 83 | 74 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 84 | 82 83 3 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝐴 ∈ ℂ ) |
| 85 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) → 𝑘 ∈ ℕ0 ) | |
| 86 | 85 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 87 | 82 86 19 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 88 | 84 87 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 89 | 81 88 | fsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 90 | 72 80 89 | fsumsub | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 91 | 73 75 3 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → 𝐴 ∈ ℂ ) |
| 92 | 76 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
| 93 | 81 87 | fsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 94 | 91 92 93 | subdid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · ( Σ 𝑘 ∈ ℕ0 𝐵 − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) − ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 95 | eqid | ⊢ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) = ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) | |
| 96 | fznn0sub | ⊢ ( 𝑗 ∈ ( 0 ... 𝑚 ) → ( 𝑚 − 𝑗 ) ∈ ℕ0 ) | |
| 97 | 96 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝑚 − 𝑗 ) ∈ ℕ0 ) |
| 98 | peano2nn0 | ⊢ ( ( 𝑚 − 𝑗 ) ∈ ℕ0 → ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℕ0 ) | |
| 99 | 97 98 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℕ0 ) |
| 100 | 99 | nn0zd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℤ ) |
| 101 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝜑 ) | |
| 102 | eluznn0 | ⊢ ( ( ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝑘 ∈ ℕ0 ) | |
| 103 | 99 102 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 104 | 101 103 4 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 105 | 101 103 5 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 106 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 107 | 73 4 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 108 | 73 5 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 109 | 107 108 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 110 | 9 99 109 | iserex | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq ( ( 𝑚 − 𝑗 ) + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) ) |
| 111 | 106 110 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → seq ( ( 𝑚 − 𝑗 ) + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) |
| 112 | 95 100 104 105 111 | isumcl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ∈ ℂ ) |
| 113 | 9 95 99 107 108 106 | isumsplit | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ℕ0 𝐵 = ( Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 114 | 97 | nn0cnd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝑚 − 𝑗 ) ∈ ℂ ) |
| 115 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 116 | pncan | ⊢ ( ( ( 𝑚 − 𝑗 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) = ( 𝑚 − 𝑗 ) ) | |
| 117 | 114 115 116 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) = ( 𝑚 − 𝑗 ) ) |
| 118 | 117 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) = ( 0 ... ( 𝑚 − 𝑗 ) ) ) |
| 119 | 118 | sumeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) 𝐵 ) |
| 120 | 82 86 4 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 121 | 120 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) 𝐵 ) |
| 122 | 119 121 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 123 | 122 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 124 | 113 123 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ℕ0 𝐵 = ( Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 125 | 93 112 124 | mvrladdd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( Σ 𝑘 ∈ ℕ0 𝐵 − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) |
| 126 | 125 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · ( Σ 𝑘 ∈ ℕ0 𝐵 − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 127 | 3 77 | mulcomd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · 𝐴 ) ) |
| 128 | 1 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · 𝐴 ) ) |
| 129 | 127 128 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 130 | 73 75 129 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 131 | 81 91 87 | fsummulc2 | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) |
| 132 | 130 131 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) − ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 133 | 94 126 132 | 3eqtr3rd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 134 | 133 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 135 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 136 | 135 | oveq2d | ⊢ ( 𝑛 = 𝑗 → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 137 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) | |
| 138 | ovex | ⊢ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ∈ V | |
| 139 | 136 137 138 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 140 | 75 139 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 141 | simpr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) | |
| 142 | 141 9 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
| 143 | 140 142 80 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) = ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) |
| 144 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 145 | 144 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 · ( 𝐺 ‘ 𝑛 ) ) = ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) |
| 146 | fveq2 | ⊢ ( 𝑛 = ( 𝑘 − 𝑗 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) | |
| 147 | 146 | oveq2d | ⊢ ( 𝑛 = ( 𝑘 − 𝑗 ) → ( 𝐴 · ( 𝐺 ‘ 𝑛 ) ) = ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 148 | 88 | anasss | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑗 ∈ ( 0 ... 𝑚 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) ) → ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 149 | 145 147 148 | fsum0diag2 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑚 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 150 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → 𝜑 ) | |
| 151 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑚 ) → 𝑘 ∈ ℕ0 ) | |
| 152 | 151 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → 𝑘 ∈ ℕ0 ) |
| 153 | 150 152 6 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 154 | 150 152 30 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
| 155 | 153 142 154 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑚 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) = ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) |
| 156 | 149 155 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) = ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) |
| 157 | 143 156 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) |
| 158 | 90 134 157 | 3eqtr3rd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 159 | 158 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) = ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) ) |
| 160 | 159 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 161 | 71 160 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ) ) → ( ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 162 | 161 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 163 | 162 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 164 | 163 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 165 | 164 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 166 | 70 165 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ) |
| 167 | 166 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ) |
| 168 | 1 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) = ( abs ‘ 𝐴 ) ) |
| 169 | 2 168 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
| 170 | 9 10 169 78 7 | abscvgcvg | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 171 | 9 10 1 3 170 | isumclim2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ Σ 𝑗 ∈ ℕ0 𝐴 ) |
| 172 | 78 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ0 ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 173 | fveq2 | ⊢ ( 𝑗 = 𝑚 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 174 | 173 | eleq1d | ⊢ ( 𝑗 = 𝑚 → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) ) |
| 175 | 174 | rspccva | ⊢ ( ( ∀ 𝑗 ∈ ℕ0 ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 176 | 172 175 | sylan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 177 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 178 | 177 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
| 179 | ovex | ⊢ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ∈ V | |
| 180 | 178 137 179 | fvmpt | ⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
| 181 | 180 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
| 182 | 9 10 76 171 176 181 | isermulc2 | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ⇝ ( Σ 𝑘 ∈ ℕ0 𝐵 · Σ 𝑗 ∈ ℕ0 𝐴 ) ) |
| 183 | 9 10 1 3 170 | isumcl | ⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 𝐴 ∈ ℂ ) |
| 184 | 76 183 | mulcomd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ℕ0 𝐵 · Σ 𝑗 ∈ ℕ0 𝐴 ) = ( Σ 𝑗 ∈ ℕ0 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) ) |
| 185 | 182 184 | breqtrd | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ⇝ ( Σ 𝑗 ∈ ℕ0 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) ) |
| 186 | 9 10 12 33 167 185 | 2clim | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( Σ 𝑗 ∈ ℕ0 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) ) |