This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the multiplicative inverse in a division ring. ( reccl analog). (Contributed by NM, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drnginvrcl.b | |- B = ( Base ` R ) |
|
| drnginvrcl.z | |- .0. = ( 0g ` R ) |
||
| drnginvrcl.i | |- I = ( invr ` R ) |
||
| Assertion | drnginvrcl | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnginvrcl.b | |- B = ( Base ` R ) |
|
| 2 | drnginvrcl.z | |- .0. = ( 0g ` R ) |
|
| 3 | drnginvrcl.i | |- I = ( invr ` R ) |
|
| 4 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 5 | 1 4 2 | drngunit | |- ( R e. DivRing -> ( X e. ( Unit ` R ) <-> ( X e. B /\ X =/= .0. ) ) ) |
| 6 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 7 | 4 3 1 | ringinvcl | |- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( I ` X ) e. B ) |
| 8 | 7 | ex | |- ( R e. Ring -> ( X e. ( Unit ` R ) -> ( I ` X ) e. B ) ) |
| 9 | 6 8 | syl | |- ( R e. DivRing -> ( X e. ( Unit ` R ) -> ( I ` X ) e. B ) ) |
| 10 | 5 9 | sylbird | |- ( R e. DivRing -> ( ( X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) ) |
| 11 | 10 | 3impib | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) |