This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership relation that implies equality of spans. ( spansneleq analog.) (Contributed by NM, 4-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsneleq.v | |- V = ( Base ` W ) |
|
| lspsneleq.o | |- .0. = ( 0g ` W ) |
||
| lspsneleq.n | |- N = ( LSpan ` W ) |
||
| lspsneleq.w | |- ( ph -> W e. LVec ) |
||
| lspsneleq.x | |- ( ph -> X e. V ) |
||
| lspsneleq.y | |- ( ph -> Y e. ( N ` { X } ) ) |
||
| lspsneleq.z | |- ( ph -> Y =/= .0. ) |
||
| Assertion | lspsneleq | |- ( ph -> ( N ` { Y } ) = ( N ` { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsneleq.v | |- V = ( Base ` W ) |
|
| 2 | lspsneleq.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspsneleq.n | |- N = ( LSpan ` W ) |
|
| 4 | lspsneleq.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspsneleq.x | |- ( ph -> X e. V ) |
|
| 6 | lspsneleq.y | |- ( ph -> Y e. ( N ` { X } ) ) |
|
| 7 | lspsneleq.z | |- ( ph -> Y =/= .0. ) |
|
| 8 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 9 | 4 8 | syl | |- ( ph -> W e. LMod ) |
| 10 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 11 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 12 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 13 | 10 11 1 12 3 | ellspsn | |- ( ( W e. LMod /\ X e. V ) -> ( Y e. ( N ` { X } ) <-> E. k e. ( Base ` ( Scalar ` W ) ) Y = ( k ( .s ` W ) X ) ) ) |
| 14 | 9 5 13 | syl2anc | |- ( ph -> ( Y e. ( N ` { X } ) <-> E. k e. ( Base ` ( Scalar ` W ) ) Y = ( k ( .s ` W ) X ) ) ) |
| 15 | simpr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> Y = ( k ( .s ` W ) X ) ) |
|
| 16 | 15 | sneqd | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> { Y } = { ( k ( .s ` W ) X ) } ) |
| 17 | 16 | fveq2d | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( N ` { Y } ) = ( N ` { ( k ( .s ` W ) X ) } ) ) |
| 18 | 4 | ad2antrr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> W e. LVec ) |
| 19 | simplr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
|
| 20 | 7 | ad2antrr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> Y =/= .0. ) |
| 21 | simplr | |- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> Y = ( k ( .s ` W ) X ) ) |
|
| 22 | simpr | |- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> k = ( 0g ` ( Scalar ` W ) ) ) |
|
| 23 | 22 | oveq1d | |- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( k ( .s ` W ) X ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) ) |
| 24 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 25 | 1 10 12 24 2 | lmod0vs | |- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
| 26 | 9 5 25 | syl2anc | |- ( ph -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
| 27 | 26 | ad3antrrr | |- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
| 28 | 21 23 27 | 3eqtrd | |- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> Y = .0. ) |
| 29 | 28 | ex | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( k = ( 0g ` ( Scalar ` W ) ) -> Y = .0. ) ) |
| 30 | 29 | necon3d | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( Y =/= .0. -> k =/= ( 0g ` ( Scalar ` W ) ) ) ) |
| 31 | 20 30 | mpd | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> k =/= ( 0g ` ( Scalar ` W ) ) ) |
| 32 | 5 | ad2antrr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> X e. V ) |
| 33 | 1 10 12 11 24 3 | lspsnvs | |- ( ( W e. LVec /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ k =/= ( 0g ` ( Scalar ` W ) ) ) /\ X e. V ) -> ( N ` { ( k ( .s ` W ) X ) } ) = ( N ` { X } ) ) |
| 34 | 18 19 31 32 33 | syl121anc | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( N ` { ( k ( .s ` W ) X ) } ) = ( N ` { X } ) ) |
| 35 | 17 34 | eqtrd | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( N ` { Y } ) = ( N ` { X } ) ) |
| 36 | 35 | rexlimdva2 | |- ( ph -> ( E. k e. ( Base ` ( Scalar ` W ) ) Y = ( k ( .s ` W ) X ) -> ( N ` { Y } ) = ( N ` { X } ) ) ) |
| 37 | 14 36 | sylbid | |- ( ph -> ( Y e. ( N ` { X } ) -> ( N ` { Y } ) = ( N ` { X } ) ) ) |
| 38 | 6 37 | mpd | |- ( ph -> ( N ` { Y } ) = ( N ` { X } ) ) |