This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of the span of a pair of vectors. (Contributed by NM, 10-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsppr.v | |- V = ( Base ` W ) |
|
| lsppr.a | |- .+ = ( +g ` W ) |
||
| lsppr.f | |- F = ( Scalar ` W ) |
||
| lsppr.k | |- K = ( Base ` F ) |
||
| lsppr.t | |- .x. = ( .s ` W ) |
||
| lsppr.n | |- N = ( LSpan ` W ) |
||
| lsppr.w | |- ( ph -> W e. LMod ) |
||
| lsppr.x | |- ( ph -> X e. V ) |
||
| lsppr.y | |- ( ph -> Y e. V ) |
||
| Assertion | lspprel | |- ( ph -> ( Z e. ( N ` { X , Y } ) <-> E. k e. K E. l e. K Z = ( ( k .x. X ) .+ ( l .x. Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsppr.v | |- V = ( Base ` W ) |
|
| 2 | lsppr.a | |- .+ = ( +g ` W ) |
|
| 3 | lsppr.f | |- F = ( Scalar ` W ) |
|
| 4 | lsppr.k | |- K = ( Base ` F ) |
|
| 5 | lsppr.t | |- .x. = ( .s ` W ) |
|
| 6 | lsppr.n | |- N = ( LSpan ` W ) |
|
| 7 | lsppr.w | |- ( ph -> W e. LMod ) |
|
| 8 | lsppr.x | |- ( ph -> X e. V ) |
|
| 9 | lsppr.y | |- ( ph -> Y e. V ) |
|
| 10 | 1 2 3 4 5 6 7 8 9 | lsppr | |- ( ph -> ( N ` { X , Y } ) = { v | E. k e. K E. l e. K v = ( ( k .x. X ) .+ ( l .x. Y ) ) } ) |
| 11 | 10 | eleq2d | |- ( ph -> ( Z e. ( N ` { X , Y } ) <-> Z e. { v | E. k e. K E. l e. K v = ( ( k .x. X ) .+ ( l .x. Y ) ) } ) ) |
| 12 | id | |- ( Z = ( ( k .x. X ) .+ ( l .x. Y ) ) -> Z = ( ( k .x. X ) .+ ( l .x. Y ) ) ) |
|
| 13 | ovex | |- ( ( k .x. X ) .+ ( l .x. Y ) ) e. _V |
|
| 14 | 12 13 | eqeltrdi | |- ( Z = ( ( k .x. X ) .+ ( l .x. Y ) ) -> Z e. _V ) |
| 15 | 14 | rexlimivw | |- ( E. l e. K Z = ( ( k .x. X ) .+ ( l .x. Y ) ) -> Z e. _V ) |
| 16 | 15 | rexlimivw | |- ( E. k e. K E. l e. K Z = ( ( k .x. X ) .+ ( l .x. Y ) ) -> Z e. _V ) |
| 17 | eqeq1 | |- ( v = Z -> ( v = ( ( k .x. X ) .+ ( l .x. Y ) ) <-> Z = ( ( k .x. X ) .+ ( l .x. Y ) ) ) ) |
|
| 18 | 17 | 2rexbidv | |- ( v = Z -> ( E. k e. K E. l e. K v = ( ( k .x. X ) .+ ( l .x. Y ) ) <-> E. k e. K E. l e. K Z = ( ( k .x. X ) .+ ( l .x. Y ) ) ) ) |
| 19 | 16 18 | elab3 | |- ( Z e. { v | E. k e. K E. l e. K v = ( ( k .x. X ) .+ ( l .x. Y ) ) } <-> E. k e. K E. l e. K Z = ( ( k .x. X ) .+ ( l .x. Y ) ) ) |
| 20 | 11 19 | bitrdi | |- ( ph -> ( Z e. ( N ` { X , Y } ) <-> E. k e. K E. l e. K Z = ( ( k .x. X ) .+ ( l .x. Y ) ) ) ) |