This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch to see if this will shorten proofs. (Contributed by NM, 24-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspexchn2.v | |- V = ( Base ` W ) |
|
| lspexchn2.n | |- N = ( LSpan ` W ) |
||
| lspexchn2.w | |- ( ph -> W e. LVec ) |
||
| lspexchn2.x | |- ( ph -> X e. V ) |
||
| lspexchn2.y | |- ( ph -> Y e. V ) |
||
| lspexchn2.z | |- ( ph -> Z e. V ) |
||
| lspexchn2.q | |- ( ph -> -. Y e. ( N ` { Z } ) ) |
||
| lspexchn2.e | |- ( ph -> -. X e. ( N ` { Z , Y } ) ) |
||
| Assertion | lspexchn2 | |- ( ph -> -. Y e. ( N ` { Z , X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspexchn2.v | |- V = ( Base ` W ) |
|
| 2 | lspexchn2.n | |- N = ( LSpan ` W ) |
|
| 3 | lspexchn2.w | |- ( ph -> W e. LVec ) |
|
| 4 | lspexchn2.x | |- ( ph -> X e. V ) |
|
| 5 | lspexchn2.y | |- ( ph -> Y e. V ) |
|
| 6 | lspexchn2.z | |- ( ph -> Z e. V ) |
|
| 7 | lspexchn2.q | |- ( ph -> -. Y e. ( N ` { Z } ) ) |
|
| 8 | lspexchn2.e | |- ( ph -> -. X e. ( N ` { Z , Y } ) ) |
|
| 9 | prcom | |- { Z , Y } = { Y , Z } |
|
| 10 | 9 | fveq2i | |- ( N ` { Z , Y } ) = ( N ` { Y , Z } ) |
| 11 | 10 | eleq2i | |- ( X e. ( N ` { Z , Y } ) <-> X e. ( N ` { Y , Z } ) ) |
| 12 | 8 11 | sylnib | |- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
| 13 | 1 2 3 4 5 6 7 12 | lspexchn1 | |- ( ph -> -. Y e. ( N ` { X , Z } ) ) |
| 14 | prcom | |- { X , Z } = { Z , X } |
|
| 15 | 14 | fveq2i | |- ( N ` { X , Z } ) = ( N ` { Z , X } ) |
| 16 | 15 | eleq2i | |- ( Y e. ( N ` { X , Z } ) <-> Y e. ( N ` { Z , X } ) ) |
| 17 | 13 16 | sylnib | |- ( ph -> -. Y e. ( N ` { Z , X } ) ) |