This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodsubvs.v | |- V = ( Base ` W ) |
|
| lmodsubvs.p | |- .+ = ( +g ` W ) |
||
| lmodsubvs.m | |- .- = ( -g ` W ) |
||
| lmodsubvs.t | |- .x. = ( .s ` W ) |
||
| lmodsubvs.f | |- F = ( Scalar ` W ) |
||
| lmodsubvs.k | |- K = ( Base ` F ) |
||
| lmodsubvs.n | |- N = ( invg ` F ) |
||
| lmodsubvs.w | |- ( ph -> W e. LMod ) |
||
| lmodsubvs.a | |- ( ph -> A e. K ) |
||
| lmodsubvs.x | |- ( ph -> X e. V ) |
||
| lmodsubvs.y | |- ( ph -> Y e. V ) |
||
| Assertion | lmodsubvs | |- ( ph -> ( X .- ( A .x. Y ) ) = ( X .+ ( ( N ` A ) .x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubvs.v | |- V = ( Base ` W ) |
|
| 2 | lmodsubvs.p | |- .+ = ( +g ` W ) |
|
| 3 | lmodsubvs.m | |- .- = ( -g ` W ) |
|
| 4 | lmodsubvs.t | |- .x. = ( .s ` W ) |
|
| 5 | lmodsubvs.f | |- F = ( Scalar ` W ) |
|
| 6 | lmodsubvs.k | |- K = ( Base ` F ) |
|
| 7 | lmodsubvs.n | |- N = ( invg ` F ) |
|
| 8 | lmodsubvs.w | |- ( ph -> W e. LMod ) |
|
| 9 | lmodsubvs.a | |- ( ph -> A e. K ) |
|
| 10 | lmodsubvs.x | |- ( ph -> X e. V ) |
|
| 11 | lmodsubvs.y | |- ( ph -> Y e. V ) |
|
| 12 | 1 5 4 6 | lmodvscl | |- ( ( W e. LMod /\ A e. K /\ Y e. V ) -> ( A .x. Y ) e. V ) |
| 13 | 8 9 11 12 | syl3anc | |- ( ph -> ( A .x. Y ) e. V ) |
| 14 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 15 | 1 2 3 5 4 7 14 | lmodvsubval2 | |- ( ( W e. LMod /\ X e. V /\ ( A .x. Y ) e. V ) -> ( X .- ( A .x. Y ) ) = ( X .+ ( ( N ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) ) |
| 16 | 8 10 13 15 | syl3anc | |- ( ph -> ( X .- ( A .x. Y ) ) = ( X .+ ( ( N ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) ) |
| 17 | 5 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 18 | 8 17 | syl | |- ( ph -> F e. Ring ) |
| 19 | ringgrp | |- ( F e. Ring -> F e. Grp ) |
|
| 20 | 18 19 | syl | |- ( ph -> F e. Grp ) |
| 21 | 6 14 | ringidcl | |- ( F e. Ring -> ( 1r ` F ) e. K ) |
| 22 | 18 21 | syl | |- ( ph -> ( 1r ` F ) e. K ) |
| 23 | 6 7 | grpinvcl | |- ( ( F e. Grp /\ ( 1r ` F ) e. K ) -> ( N ` ( 1r ` F ) ) e. K ) |
| 24 | 20 22 23 | syl2anc | |- ( ph -> ( N ` ( 1r ` F ) ) e. K ) |
| 25 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 26 | 1 5 4 6 25 | lmodvsass | |- ( ( W e. LMod /\ ( ( N ` ( 1r ` F ) ) e. K /\ A e. K /\ Y e. V ) ) -> ( ( ( N ` ( 1r ` F ) ) ( .r ` F ) A ) .x. Y ) = ( ( N ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) |
| 27 | 8 24 9 11 26 | syl13anc | |- ( ph -> ( ( ( N ` ( 1r ` F ) ) ( .r ` F ) A ) .x. Y ) = ( ( N ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) |
| 28 | 6 25 14 7 18 9 | ringnegl | |- ( ph -> ( ( N ` ( 1r ` F ) ) ( .r ` F ) A ) = ( N ` A ) ) |
| 29 | 28 | oveq1d | |- ( ph -> ( ( ( N ` ( 1r ` F ) ) ( .r ` F ) A ) .x. Y ) = ( ( N ` A ) .x. Y ) ) |
| 30 | 27 29 | eqtr3d | |- ( ph -> ( ( N ` ( 1r ` F ) ) .x. ( A .x. Y ) ) = ( ( N ` A ) .x. Y ) ) |
| 31 | 30 | oveq2d | |- ( ph -> ( X .+ ( ( N ` ( 1r ` F ) ) .x. ( A .x. Y ) ) ) = ( X .+ ( ( N ` A ) .x. Y ) ) ) |
| 32 | 16 31 | eqtrd | |- ( ph -> ( X .- ( A .x. Y ) ) = ( X .+ ( ( N ` A ) .x. Y ) ) ) |