This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmodring.1 | |- F = ( Scalar ` W ) |
|
| Assertion | lmodring | |- ( W e. LMod -> F e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodring.1 | |- F = ( Scalar ` W ) |
|
| 2 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 3 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 4 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 5 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 6 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 7 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 8 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 9 | 2 3 4 1 5 6 7 8 | islmod | |- ( W e. LMod <-> ( W e. Grp /\ F e. Ring /\ A. q e. ( Base ` F ) A. r e. ( Base ` F ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` F ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` F ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` F ) ( .s ` W ) w ) = w ) ) ) ) |
| 10 | 9 | simp2bi | |- ( W e. LMod -> F e. Ring ) |