This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch to see if this will shorten proofs. (Contributed by NM, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspexchn1.v | |- V = ( Base ` W ) |
|
| lspexchn1.n | |- N = ( LSpan ` W ) |
||
| lspexchn1.w | |- ( ph -> W e. LVec ) |
||
| lspexchn1.x | |- ( ph -> X e. V ) |
||
| lspexchn1.y | |- ( ph -> Y e. V ) |
||
| lspexchn1.z | |- ( ph -> Z e. V ) |
||
| lspexchn1.q | |- ( ph -> -. Y e. ( N ` { Z } ) ) |
||
| lspexchn1.e | |- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
||
| Assertion | lspexchn1 | |- ( ph -> -. Y e. ( N ` { X , Z } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspexchn1.v | |- V = ( Base ` W ) |
|
| 2 | lspexchn1.n | |- N = ( LSpan ` W ) |
|
| 3 | lspexchn1.w | |- ( ph -> W e. LVec ) |
|
| 4 | lspexchn1.x | |- ( ph -> X e. V ) |
|
| 5 | lspexchn1.y | |- ( ph -> Y e. V ) |
|
| 6 | lspexchn1.z | |- ( ph -> Z e. V ) |
|
| 7 | lspexchn1.q | |- ( ph -> -. Y e. ( N ` { Z } ) ) |
|
| 8 | lspexchn1.e | |- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
|
| 9 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 10 | 3 | adantr | |- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> W e. LVec ) |
| 11 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 12 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 13 | 3 12 | syl | |- ( ph -> W e. LMod ) |
| 14 | 1 11 2 | lspsncl | |- ( ( W e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 15 | 13 6 14 | syl2anc | |- ( ph -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 16 | 9 11 13 15 5 7 | lssneln0 | |- ( ph -> Y e. ( V \ { ( 0g ` W ) } ) ) |
| 17 | 16 | adantr | |- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Y e. ( V \ { ( 0g ` W ) } ) ) |
| 18 | 4 | adantr | |- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> X e. V ) |
| 19 | 6 | adantr | |- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Z e. V ) |
| 20 | 1 2 13 5 6 7 | lspsnne2 | |- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
| 22 | simpr | |- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Y e. ( N ` { X , Z } ) ) |
|
| 23 | 1 9 2 10 17 18 19 21 22 | lspexch | |- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> X e. ( N ` { Y , Z } ) ) |
| 24 | 8 23 | mtand | |- ( ph -> -. Y e. ( N ` { X , Z } ) ) |