This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scalar product with a vector belongs to the span of its singleton. ( spansnmul analog.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnvsel.v | |- V = ( Base ` W ) |
|
| lspsnvsel.t | |- .x. = ( .s ` W ) |
||
| lspsnvsel.f | |- F = ( Scalar ` W ) |
||
| lspsnvsel.k | |- K = ( Base ` F ) |
||
| lspsnvsel.n | |- N = ( LSpan ` W ) |
||
| lspsnvsel.w | |- ( ph -> W e. LMod ) |
||
| lspsnvsel.a | |- ( ph -> A e. K ) |
||
| lspsnvsel.x | |- ( ph -> X e. V ) |
||
| Assertion | ellspsni | |- ( ph -> ( A .x. X ) e. ( N ` { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnvsel.v | |- V = ( Base ` W ) |
|
| 2 | lspsnvsel.t | |- .x. = ( .s ` W ) |
|
| 3 | lspsnvsel.f | |- F = ( Scalar ` W ) |
|
| 4 | lspsnvsel.k | |- K = ( Base ` F ) |
|
| 5 | lspsnvsel.n | |- N = ( LSpan ` W ) |
|
| 6 | lspsnvsel.w | |- ( ph -> W e. LMod ) |
|
| 7 | lspsnvsel.a | |- ( ph -> A e. K ) |
|
| 8 | lspsnvsel.x | |- ( ph -> X e. V ) |
|
| 9 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 10 | 1 9 5 | lspsncl | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 11 | 6 8 10 | syl2anc | |- ( ph -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 12 | 1 5 | lspsnid | |- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 13 | 6 8 12 | syl2anc | |- ( ph -> X e. ( N ` { X } ) ) |
| 14 | 3 2 4 9 | lssvscl | |- ( ( ( W e. LMod /\ ( N ` { X } ) e. ( LSubSp ` W ) ) /\ ( A e. K /\ X e. ( N ` { X } ) ) ) -> ( A .x. X ) e. ( N ` { X } ) ) |
| 15 | 6 11 7 13 14 | syl22anc | |- ( ph -> ( A .x. X ) e. ( N ` { X } ) ) |