This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar product with the ring unity. ( ax-hvmulid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvs1.v | |- V = ( Base ` W ) |
|
| lmodvs1.f | |- F = ( Scalar ` W ) |
||
| lmodvs1.s | |- .x. = ( .s ` W ) |
||
| lmodvs1.u | |- .1. = ( 1r ` F ) |
||
| Assertion | lmodvs1 | |- ( ( W e. LMod /\ X e. V ) -> ( .1. .x. X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvs1.v | |- V = ( Base ` W ) |
|
| 2 | lmodvs1.f | |- F = ( Scalar ` W ) |
|
| 3 | lmodvs1.s | |- .x. = ( .s ` W ) |
|
| 4 | lmodvs1.u | |- .1. = ( 1r ` F ) |
|
| 5 | simpl | |- ( ( W e. LMod /\ X e. V ) -> W e. LMod ) |
|
| 6 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 7 | 2 6 4 | lmod1cl | |- ( W e. LMod -> .1. e. ( Base ` F ) ) |
| 8 | 7 | adantr | |- ( ( W e. LMod /\ X e. V ) -> .1. e. ( Base ` F ) ) |
| 9 | simpr | |- ( ( W e. LMod /\ X e. V ) -> X e. V ) |
|
| 10 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 11 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 12 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 13 | 1 10 3 2 6 11 12 4 | lmodlema | |- ( ( W e. LMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( .1. .x. X ) e. V /\ ( .1. .x. ( X ( +g ` W ) X ) ) = ( ( .1. .x. X ) ( +g ` W ) ( .1. .x. X ) ) /\ ( ( .1. ( +g ` F ) .1. ) .x. X ) = ( ( .1. .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) /\ ( ( ( .1. ( .r ` F ) .1. ) .x. X ) = ( .1. .x. ( .1. .x. X ) ) /\ ( .1. .x. X ) = X ) ) ) |
| 14 | 13 | simprrd | |- ( ( W e. LMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( .1. .x. X ) = X ) |
| 15 | 5 8 8 9 9 14 | syl122anc | |- ( ( W e. LMod /\ X e. V ) -> ( .1. .x. X ) = X ) |