This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsppreli.v | |- V = ( Base ` W ) |
|
| lsppreli.p | |- .+ = ( +g ` W ) |
||
| lsppreli.t | |- .x. = ( .s ` W ) |
||
| lsppreli.f | |- F = ( Scalar ` W ) |
||
| lsppreli.k | |- K = ( Base ` F ) |
||
| lsppreli.n | |- N = ( LSpan ` W ) |
||
| lsppreli.w | |- ( ph -> W e. LMod ) |
||
| lsppreli.a | |- ( ph -> A e. K ) |
||
| lsppreli.b | |- ( ph -> B e. K ) |
||
| lsppreli.x | |- ( ph -> X e. V ) |
||
| lsppreli.y | |- ( ph -> Y e. V ) |
||
| Assertion | lsppreli | |- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( N ` { X , Y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsppreli.v | |- V = ( Base ` W ) |
|
| 2 | lsppreli.p | |- .+ = ( +g ` W ) |
|
| 3 | lsppreli.t | |- .x. = ( .s ` W ) |
|
| 4 | lsppreli.f | |- F = ( Scalar ` W ) |
|
| 5 | lsppreli.k | |- K = ( Base ` F ) |
|
| 6 | lsppreli.n | |- N = ( LSpan ` W ) |
|
| 7 | lsppreli.w | |- ( ph -> W e. LMod ) |
|
| 8 | lsppreli.a | |- ( ph -> A e. K ) |
|
| 9 | lsppreli.b | |- ( ph -> B e. K ) |
|
| 10 | lsppreli.x | |- ( ph -> X e. V ) |
|
| 11 | lsppreli.y | |- ( ph -> Y e. V ) |
|
| 12 | 1 6 | lspsnsubg | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 13 | 7 10 12 | syl2anc | |- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 14 | 1 6 | lspsnsubg | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 15 | 7 11 14 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 16 | 1 3 4 5 6 7 8 10 | ellspsni | |- ( ph -> ( A .x. X ) e. ( N ` { X } ) ) |
| 17 | 1 3 4 5 6 7 9 11 | ellspsni | |- ( ph -> ( B .x. Y ) e. ( N ` { Y } ) ) |
| 18 | eqid | |- ( LSSum ` W ) = ( LSSum ` W ) |
|
| 19 | 2 18 | lsmelvali | |- ( ( ( ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { Y } ) e. ( SubGrp ` W ) ) /\ ( ( A .x. X ) e. ( N ` { X } ) /\ ( B .x. Y ) e. ( N ` { Y } ) ) ) -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
| 20 | 13 15 16 17 19 | syl22anc | |- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
| 21 | 1 6 18 7 10 11 | lsmpr | |- ( ph -> ( N ` { X , Y } ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
| 22 | 20 21 | eleqtrrd | |- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( N ` { X , Y } ) ) |