This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecinv.v | |- V = ( Base ` W ) |
|
| lvecinv.t | |- .x. = ( .s ` W ) |
||
| lvecinv.f | |- F = ( Scalar ` W ) |
||
| lvecinv.k | |- K = ( Base ` F ) |
||
| lvecinv.o | |- .0. = ( 0g ` F ) |
||
| lvecinv.i | |- I = ( invr ` F ) |
||
| lvecinv.w | |- ( ph -> W e. LVec ) |
||
| lvecinv.a | |- ( ph -> A e. ( K \ { .0. } ) ) |
||
| lvecinv.x | |- ( ph -> X e. V ) |
||
| lvecinv.y | |- ( ph -> Y e. V ) |
||
| Assertion | lvecinv | |- ( ph -> ( X = ( A .x. Y ) <-> Y = ( ( I ` A ) .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecinv.v | |- V = ( Base ` W ) |
|
| 2 | lvecinv.t | |- .x. = ( .s ` W ) |
|
| 3 | lvecinv.f | |- F = ( Scalar ` W ) |
|
| 4 | lvecinv.k | |- K = ( Base ` F ) |
|
| 5 | lvecinv.o | |- .0. = ( 0g ` F ) |
|
| 6 | lvecinv.i | |- I = ( invr ` F ) |
|
| 7 | lvecinv.w | |- ( ph -> W e. LVec ) |
|
| 8 | lvecinv.a | |- ( ph -> A e. ( K \ { .0. } ) ) |
|
| 9 | lvecinv.x | |- ( ph -> X e. V ) |
|
| 10 | lvecinv.y | |- ( ph -> Y e. V ) |
|
| 11 | oveq2 | |- ( X = ( A .x. Y ) -> ( ( I ` A ) .x. X ) = ( ( I ` A ) .x. ( A .x. Y ) ) ) |
|
| 12 | 3 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) |
| 13 | 7 12 | syl | |- ( ph -> F e. DivRing ) |
| 14 | 8 | eldifad | |- ( ph -> A e. K ) |
| 15 | eldifsni | |- ( A e. ( K \ { .0. } ) -> A =/= .0. ) |
|
| 16 | 8 15 | syl | |- ( ph -> A =/= .0. ) |
| 17 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 18 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 19 | 4 5 17 18 6 | drnginvrl | |- ( ( F e. DivRing /\ A e. K /\ A =/= .0. ) -> ( ( I ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) |
| 20 | 13 14 16 19 | syl3anc | |- ( ph -> ( ( I ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) |
| 21 | 20 | oveq1d | |- ( ph -> ( ( ( I ` A ) ( .r ` F ) A ) .x. Y ) = ( ( 1r ` F ) .x. Y ) ) |
| 22 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 23 | 7 22 | syl | |- ( ph -> W e. LMod ) |
| 24 | 4 5 6 | drnginvrcl | |- ( ( F e. DivRing /\ A e. K /\ A =/= .0. ) -> ( I ` A ) e. K ) |
| 25 | 13 14 16 24 | syl3anc | |- ( ph -> ( I ` A ) e. K ) |
| 26 | 1 3 2 4 17 | lmodvsass | |- ( ( W e. LMod /\ ( ( I ` A ) e. K /\ A e. K /\ Y e. V ) ) -> ( ( ( I ` A ) ( .r ` F ) A ) .x. Y ) = ( ( I ` A ) .x. ( A .x. Y ) ) ) |
| 27 | 23 25 14 10 26 | syl13anc | |- ( ph -> ( ( ( I ` A ) ( .r ` F ) A ) .x. Y ) = ( ( I ` A ) .x. ( A .x. Y ) ) ) |
| 28 | 1 3 2 18 | lmodvs1 | |- ( ( W e. LMod /\ Y e. V ) -> ( ( 1r ` F ) .x. Y ) = Y ) |
| 29 | 23 10 28 | syl2anc | |- ( ph -> ( ( 1r ` F ) .x. Y ) = Y ) |
| 30 | 21 27 29 | 3eqtr3d | |- ( ph -> ( ( I ` A ) .x. ( A .x. Y ) ) = Y ) |
| 31 | 11 30 | sylan9eqr | |- ( ( ph /\ X = ( A .x. Y ) ) -> ( ( I ` A ) .x. X ) = Y ) |
| 32 | 4 5 17 18 6 | drnginvrr | |- ( ( F e. DivRing /\ A e. K /\ A =/= .0. ) -> ( A ( .r ` F ) ( I ` A ) ) = ( 1r ` F ) ) |
| 33 | 13 14 16 32 | syl3anc | |- ( ph -> ( A ( .r ` F ) ( I ` A ) ) = ( 1r ` F ) ) |
| 34 | 33 | oveq1d | |- ( ph -> ( ( A ( .r ` F ) ( I ` A ) ) .x. X ) = ( ( 1r ` F ) .x. X ) ) |
| 35 | 1 3 2 4 17 | lmodvsass | |- ( ( W e. LMod /\ ( A e. K /\ ( I ` A ) e. K /\ X e. V ) ) -> ( ( A ( .r ` F ) ( I ` A ) ) .x. X ) = ( A .x. ( ( I ` A ) .x. X ) ) ) |
| 36 | 23 14 25 9 35 | syl13anc | |- ( ph -> ( ( A ( .r ` F ) ( I ` A ) ) .x. X ) = ( A .x. ( ( I ` A ) .x. X ) ) ) |
| 37 | 1 3 2 18 | lmodvs1 | |- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) |
| 38 | 23 9 37 | syl2anc | |- ( ph -> ( ( 1r ` F ) .x. X ) = X ) |
| 39 | 34 36 38 | 3eqtr3rd | |- ( ph -> X = ( A .x. ( ( I ` A ) .x. X ) ) ) |
| 40 | oveq2 | |- ( ( ( I ` A ) .x. X ) = Y -> ( A .x. ( ( I ` A ) .x. X ) ) = ( A .x. Y ) ) |
|
| 41 | 39 40 | sylan9eq | |- ( ( ph /\ ( ( I ` A ) .x. X ) = Y ) -> X = ( A .x. Y ) ) |
| 42 | 31 41 | impbida | |- ( ph -> ( X = ( A .x. Y ) <-> ( ( I ` A ) .x. X ) = Y ) ) |
| 43 | eqcom | |- ( ( ( I ` A ) .x. X ) = Y <-> Y = ( ( I ` A ) .x. X ) ) |
|
| 44 | 42 43 | bitrdi | |- ( ph -> ( X = ( A .x. Y ) <-> Y = ( ( I ` A ) .x. X ) ) ) |