This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanval | |- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = A -> ( _i x. x ) = ( _i x. A ) ) |
|
| 2 | 1 | oveq2d | |- ( x = A -> ( 1 - ( _i x. x ) ) = ( 1 - ( _i x. A ) ) ) |
| 3 | 2 | fveq2d | |- ( x = A -> ( log ` ( 1 - ( _i x. x ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) |
| 4 | 1 | oveq2d | |- ( x = A -> ( 1 + ( _i x. x ) ) = ( 1 + ( _i x. A ) ) ) |
| 5 | 4 | fveq2d | |- ( x = A -> ( log ` ( 1 + ( _i x. x ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 6 | 3 5 | oveq12d | |- ( x = A -> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 7 | 6 | oveq2d | |- ( x = A -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 8 | df-atan | |- arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
|
| 9 | ovex | |- ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( A e. ( CC \ { -u _i , _i } ) -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 11 | atanf | |- arctan : ( CC \ { -u _i , _i } ) --> CC |
|
| 12 | 11 | fdmi | |- dom arctan = ( CC \ { -u _i , _i } ) |
| 13 | 10 12 | eleq2s | |- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |