This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move negative sign inside of a division. (Contributed by NM, 17-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divneg | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = ( -u A / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reccl | |- ( ( B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
|
| 2 | mulneg1 | |- ( ( A e. CC /\ ( 1 / B ) e. CC ) -> ( -u A x. ( 1 / B ) ) = -u ( A x. ( 1 / B ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( -u A x. ( 1 / B ) ) = -u ( A x. ( 1 / B ) ) ) |
| 4 | 3 | 3impb | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u A x. ( 1 / B ) ) = -u ( A x. ( 1 / B ) ) ) |
| 5 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 6 | divrec | |- ( ( -u A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u A / B ) = ( -u A x. ( 1 / B ) ) ) |
|
| 7 | 5 6 | syl3an1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u A / B ) = ( -u A x. ( 1 / B ) ) ) |
| 8 | divrec | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
|
| 9 | 8 | negeqd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = -u ( A x. ( 1 / B ) ) ) |
| 10 | 4 7 9 | 3eqtr4rd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = ( -u A / B ) ) |