This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atantayl3.1 | |- F = ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) |
|
| Assertion | atantayl3 | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , F ) ~~> ( arctan ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atantayl3.1 | |- F = ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) |
|
| 2 | 2nn0 | |- 2 e. NN0 |
|
| 3 | simpr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> n e. NN0 ) |
|
| 4 | nn0mulcl | |- ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
|
| 5 | 2 3 4 | sylancr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
| 6 | 5 | nn0cnd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( 2 x. n ) e. CC ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | pncan | |- ( ( ( 2 x. n ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) |
|
| 9 | 6 7 8 | sylancl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) |
| 10 | 9 | oveq1d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = ( ( 2 x. n ) / 2 ) ) |
| 11 | nn0cn | |- ( n e. NN0 -> n e. CC ) |
|
| 12 | 11 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> n e. CC ) |
| 13 | 2cnd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> 2 e. CC ) |
|
| 14 | 2ne0 | |- 2 =/= 0 |
|
| 15 | 14 | a1i | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> 2 =/= 0 ) |
| 16 | 12 13 15 | divcan3d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( 2 x. n ) / 2 ) = n ) |
| 17 | 10 16 | eqtr2d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> n = ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) |
| 18 | 17 | oveq2d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( -u 1 ^ n ) = ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) ) |
| 19 | 18 | oveq1d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( -u 1 ^ n ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) = ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) |
| 20 | 19 | mpteq2dva | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 21 | 1 20 | eqtrid | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> F = ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 22 | 21 | seqeq3d | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , F ) = seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
| 23 | eqid | |- ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( A ^ k ) / k ) ) ) ) = ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( A ^ k ) / k ) ) ) ) |
|
| 24 | 23 | atantayl2 | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( A ^ k ) / k ) ) ) ) ) ~~> ( arctan ` A ) ) |
| 25 | neg1cn | |- -u 1 e. CC |
|
| 26 | expcl | |- ( ( -u 1 e. CC /\ n e. NN0 ) -> ( -u 1 ^ n ) e. CC ) |
|
| 27 | 25 3 26 | sylancr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( -u 1 ^ n ) e. CC ) |
| 28 | simpll | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> A e. CC ) |
|
| 29 | peano2nn0 | |- ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN0 ) |
|
| 30 | 5 29 | syl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) e. NN0 ) |
| 31 | 28 30 | expcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 32 | nn0p1nn | |- ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
|
| 33 | 5 32 | syl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) e. NN ) |
| 34 | 33 | nncnd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) e. CC ) |
| 35 | 33 | nnne0d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
| 36 | 31 34 35 | divcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 37 | 27 36 | mulcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( -u 1 ^ n ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) e. CC ) |
| 38 | 19 37 | eqeltrrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) e. CC ) |
| 39 | oveq1 | |- ( k = ( ( 2 x. n ) + 1 ) -> ( k - 1 ) = ( ( ( 2 x. n ) + 1 ) - 1 ) ) |
|
| 40 | 39 | oveq1d | |- ( k = ( ( 2 x. n ) + 1 ) -> ( ( k - 1 ) / 2 ) = ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) |
| 41 | 40 | oveq2d | |- ( k = ( ( 2 x. n ) + 1 ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) = ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) ) |
| 42 | oveq2 | |- ( k = ( ( 2 x. n ) + 1 ) -> ( A ^ k ) = ( A ^ ( ( 2 x. n ) + 1 ) ) ) |
|
| 43 | id | |- ( k = ( ( 2 x. n ) + 1 ) -> k = ( ( 2 x. n ) + 1 ) ) |
|
| 44 | 42 43 | oveq12d | |- ( k = ( ( 2 x. n ) + 1 ) -> ( ( A ^ k ) / k ) = ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
| 45 | 41 44 | oveq12d | |- ( k = ( ( 2 x. n ) + 1 ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( A ^ k ) / k ) ) = ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) |
| 46 | 38 45 | iserodd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` A ) <-> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( A ^ k ) / k ) ) ) ) ) ~~> ( arctan ` A ) ) ) |
| 47 | 24 46 | mpbird | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` A ) ) |
| 48 | 22 47 | eqbrtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , F ) ~~> ( arctan ` A ) ) |