This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bndatandm | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. dom arctan ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
|
| 2 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 3 | 2 | adantr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 2 ) e. CC ) |
| 4 | 3 | abscld | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) e. RR ) |
| 5 | 2nn0 | |- 2 e. NN0 |
|
| 6 | absexp | |- ( ( A e. CC /\ 2 e. NN0 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) |
|
| 7 | 1 5 6 | sylancl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) |
| 8 | simpr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
|
| 9 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 10 | 9 | adantr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) |
| 11 | 1red | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. RR ) |
|
| 12 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
| 13 | 12 | adantr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( abs ` A ) ) |
| 14 | 0le1 | |- 0 <_ 1 |
|
| 15 | 14 | a1i | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ 1 ) |
| 16 | 10 11 13 15 | lt2sqd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( ( abs ` A ) ^ 2 ) < ( 1 ^ 2 ) ) ) |
| 17 | 8 16 | mpbid | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) ^ 2 ) < ( 1 ^ 2 ) ) |
| 18 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 19 | 17 18 | breqtrdi | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) ^ 2 ) < 1 ) |
| 20 | 7 19 | eqbrtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) < 1 ) |
| 21 | 4 20 | ltned | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) =/= 1 ) |
| 22 | fveq2 | |- ( ( A ^ 2 ) = -u 1 -> ( abs ` ( A ^ 2 ) ) = ( abs ` -u 1 ) ) |
|
| 23 | ax-1cn | |- 1 e. CC |
|
| 24 | 23 | absnegi | |- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 25 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 26 | 24 25 | eqtri | |- ( abs ` -u 1 ) = 1 |
| 27 | 22 26 | eqtrdi | |- ( ( A ^ 2 ) = -u 1 -> ( abs ` ( A ^ 2 ) ) = 1 ) |
| 28 | 27 | necon3i | |- ( ( abs ` ( A ^ 2 ) ) =/= 1 -> ( A ^ 2 ) =/= -u 1 ) |
| 29 | 21 28 | syl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 2 ) =/= -u 1 ) |
| 30 | atandm3 | |- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |
|
| 31 | 1 29 30 | sylanbrc | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. dom arctan ) |