This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancel equal divisors in a division. (Contributed by Jeff Hankins, 29-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan7 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) / ( B / C ) ) = ( A / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divdivdiv | |- ( ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) /\ ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( A / C ) / ( B / C ) ) = ( ( A x. C ) / ( C x. B ) ) ) |
|
| 2 | 1 | 3impdir | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) / ( B / C ) ) = ( ( A x. C ) / ( C x. B ) ) ) |
| 3 | mulcom | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
|
| 4 | 3 | adantrr | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. C ) = ( C x. A ) ) |
| 5 | 4 | 3adant2 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. C ) = ( C x. A ) ) |
| 6 | 5 | oveq1d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. C ) / ( C x. B ) ) = ( ( C x. A ) / ( C x. B ) ) ) |
| 7 | divcan5 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) / ( C x. B ) ) = ( A / B ) ) |
|
| 8 | 2 6 7 | 3eqtrd | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) / ( B / C ) ) = ( A / B ) ) |