This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value distributes over division. (Contributed by NM, 27-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absdiv | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` ( A / B ) ) = ( ( abs ` A ) / ( abs ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
|
| 2 | abscl | |- ( ( A / B ) e. CC -> ( abs ` ( A / B ) ) e. RR ) |
|
| 3 | 1 2 | syl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` ( A / B ) ) e. RR ) |
| 4 | 3 | recnd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` ( A / B ) ) e. CC ) |
| 5 | absrpcl | |- ( ( B e. CC /\ B =/= 0 ) -> ( abs ` B ) e. RR+ ) |
|
| 6 | 5 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` B ) e. RR+ ) |
| 7 | 6 | rpcnd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` B ) e. CC ) |
| 8 | 6 | rpne0d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` B ) =/= 0 ) |
| 9 | 4 7 8 | divcan4d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( ( abs ` ( A / B ) ) x. ( abs ` B ) ) / ( abs ` B ) ) = ( abs ` ( A / B ) ) ) |
| 10 | simp2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
|
| 11 | absmul | |- ( ( ( A / B ) e. CC /\ B e. CC ) -> ( abs ` ( ( A / B ) x. B ) ) = ( ( abs ` ( A / B ) ) x. ( abs ` B ) ) ) |
|
| 12 | 1 10 11 | syl2anc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` ( ( A / B ) x. B ) ) = ( ( abs ` ( A / B ) ) x. ( abs ` B ) ) ) |
| 13 | divcan1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) x. B ) = A ) |
|
| 14 | 13 | fveq2d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` ( ( A / B ) x. B ) ) = ( abs ` A ) ) |
| 15 | 12 14 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( abs ` ( A / B ) ) x. ( abs ` B ) ) = ( abs ` A ) ) |
| 16 | 15 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( ( abs ` ( A / B ) ) x. ( abs ` B ) ) / ( abs ` B ) ) = ( ( abs ` A ) / ( abs ` B ) ) ) |
| 17 | 9 16 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` ( A / B ) ) = ( ( abs ` A ) / ( abs ` B ) ) ) |