This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit at the lower bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 3-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ioodvbdlimc1lem2.a | |- ( ph -> A e. RR ) |
|
| ioodvbdlimc1lem2.b | |- ( ph -> B e. RR ) |
||
| ioodvbdlimc1lem2.altb | |- ( ph -> A < B ) |
||
| ioodvbdlimc1lem2.f | |- ( ph -> F : ( A (,) B ) --> RR ) |
||
| ioodvbdlimc1lem2.dmdv | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| ioodvbdlimc1lem2.dvbd | |- ( ph -> E. y e. RR A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ y ) |
||
| ioodvbdlimc1lem2.y | |- Y = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) |
||
| ioodvbdlimc1lem2.m | |- M = ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) |
||
| ioodvbdlimc1lem2.s | |- S = ( j e. ( ZZ>= ` M ) |-> ( F ` ( A + ( 1 / j ) ) ) ) |
||
| ioodvbdlimc1lem2.r | |- R = ( j e. ( ZZ>= ` M ) |-> ( A + ( 1 / j ) ) ) |
||
| ioodvbdlimc1lem2.n | |- N = if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) |
||
| ioodvbdlimc1lem2.ch | |- ( ch <-> ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) ) |
||
| Assertion | ioodvbdlimc1lem2 | |- ( ph -> ( limsup ` S ) e. ( F limCC A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioodvbdlimc1lem2.a | |- ( ph -> A e. RR ) |
|
| 2 | ioodvbdlimc1lem2.b | |- ( ph -> B e. RR ) |
|
| 3 | ioodvbdlimc1lem2.altb | |- ( ph -> A < B ) |
|
| 4 | ioodvbdlimc1lem2.f | |- ( ph -> F : ( A (,) B ) --> RR ) |
|
| 5 | ioodvbdlimc1lem2.dmdv | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 6 | ioodvbdlimc1lem2.dvbd | |- ( ph -> E. y e. RR A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ y ) |
|
| 7 | ioodvbdlimc1lem2.y | |- Y = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) |
|
| 8 | ioodvbdlimc1lem2.m | |- M = ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) |
|
| 9 | ioodvbdlimc1lem2.s | |- S = ( j e. ( ZZ>= ` M ) |-> ( F ` ( A + ( 1 / j ) ) ) ) |
|
| 10 | ioodvbdlimc1lem2.r | |- R = ( j e. ( ZZ>= ` M ) |-> ( A + ( 1 / j ) ) ) |
|
| 11 | ioodvbdlimc1lem2.n | |- N = if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) |
|
| 12 | ioodvbdlimc1lem2.ch | |- ( ch <-> ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) ) |
|
| 13 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 14 | zssre | |- ZZ C_ RR |
|
| 15 | 13 14 | sstri | |- ( ZZ>= ` M ) C_ RR |
| 16 | 15 | a1i | |- ( ph -> ( ZZ>= ` M ) C_ RR ) |
| 17 | 2 1 | resubcld | |- ( ph -> ( B - A ) e. RR ) |
| 18 | 1 2 | posdifd | |- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 19 | 3 18 | mpbid | |- ( ph -> 0 < ( B - A ) ) |
| 20 | 19 | gt0ne0d | |- ( ph -> ( B - A ) =/= 0 ) |
| 21 | 17 20 | rereccld | |- ( ph -> ( 1 / ( B - A ) ) e. RR ) |
| 22 | 0red | |- ( ph -> 0 e. RR ) |
|
| 23 | 17 19 | recgt0d | |- ( ph -> 0 < ( 1 / ( B - A ) ) ) |
| 24 | 22 21 23 | ltled | |- ( ph -> 0 <_ ( 1 / ( B - A ) ) ) |
| 25 | flge0nn0 | |- ( ( ( 1 / ( B - A ) ) e. RR /\ 0 <_ ( 1 / ( B - A ) ) ) -> ( |_ ` ( 1 / ( B - A ) ) ) e. NN0 ) |
|
| 26 | 21 24 25 | syl2anc | |- ( ph -> ( |_ ` ( 1 / ( B - A ) ) ) e. NN0 ) |
| 27 | peano2nn0 | |- ( ( |_ ` ( 1 / ( B - A ) ) ) e. NN0 -> ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) e. NN0 ) |
|
| 28 | 26 27 | syl | |- ( ph -> ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) e. NN0 ) |
| 29 | 8 28 | eqeltrid | |- ( ph -> M e. NN0 ) |
| 30 | 29 | nn0zd | |- ( ph -> M e. ZZ ) |
| 31 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 32 | 31 | uzsup | |- ( M e. ZZ -> sup ( ( ZZ>= ` M ) , RR* , < ) = +oo ) |
| 33 | 30 32 | syl | |- ( ph -> sup ( ( ZZ>= ` M ) , RR* , < ) = +oo ) |
| 34 | 4 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> F : ( A (,) B ) --> RR ) |
| 35 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 36 | 35 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> A e. RR* ) |
| 37 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 38 | 37 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> B e. RR* ) |
| 39 | 1 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> A e. RR ) |
| 40 | eluzelre | |- ( j e. ( ZZ>= ` M ) -> j e. RR ) |
|
| 41 | 40 | adantl | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. RR ) |
| 42 | 0red | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> 0 e. RR ) |
|
| 43 | 0red | |- ( j e. ( ZZ>= ` M ) -> 0 e. RR ) |
|
| 44 | 1red | |- ( j e. ( ZZ>= ` M ) -> 1 e. RR ) |
|
| 45 | 43 44 | readdcld | |- ( j e. ( ZZ>= ` M ) -> ( 0 + 1 ) e. RR ) |
| 46 | 45 | adantl | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 0 + 1 ) e. RR ) |
| 47 | 43 | ltp1d | |- ( j e. ( ZZ>= ` M ) -> 0 < ( 0 + 1 ) ) |
| 48 | 47 | adantl | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> 0 < ( 0 + 1 ) ) |
| 49 | eluzel2 | |- ( j e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 50 | 49 | zred | |- ( j e. ( ZZ>= ` M ) -> M e. RR ) |
| 51 | 50 | adantl | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> M e. RR ) |
| 52 | 21 | flcld | |- ( ph -> ( |_ ` ( 1 / ( B - A ) ) ) e. ZZ ) |
| 53 | 52 | zred | |- ( ph -> ( |_ ` ( 1 / ( B - A ) ) ) e. RR ) |
| 54 | 1red | |- ( ph -> 1 e. RR ) |
|
| 55 | 26 | nn0ge0d | |- ( ph -> 0 <_ ( |_ ` ( 1 / ( B - A ) ) ) ) |
| 56 | 22 53 54 55 | leadd1dd | |- ( ph -> ( 0 + 1 ) <_ ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |
| 57 | 56 8 | breqtrrdi | |- ( ph -> ( 0 + 1 ) <_ M ) |
| 58 | 57 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 0 + 1 ) <_ M ) |
| 59 | eluzle | |- ( j e. ( ZZ>= ` M ) -> M <_ j ) |
|
| 60 | 59 | adantl | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> M <_ j ) |
| 61 | 46 51 41 58 60 | letrd | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 0 + 1 ) <_ j ) |
| 62 | 42 46 41 48 61 | ltletrd | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> 0 < j ) |
| 63 | 62 | gt0ne0d | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j =/= 0 ) |
| 64 | 41 63 | rereccld | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 1 / j ) e. RR ) |
| 65 | 39 64 | readdcld | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( A + ( 1 / j ) ) e. RR ) |
| 66 | 41 62 | elrpd | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. RR+ ) |
| 67 | 66 | rpreccld | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 1 / j ) e. RR+ ) |
| 68 | 39 67 | ltaddrpd | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> A < ( A + ( 1 / j ) ) ) |
| 69 | 29 | nn0red | |- ( ph -> M e. RR ) |
| 70 | 22 54 | readdcld | |- ( ph -> ( 0 + 1 ) e. RR ) |
| 71 | 53 54 | readdcld | |- ( ph -> ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) e. RR ) |
| 72 | 22 | ltp1d | |- ( ph -> 0 < ( 0 + 1 ) ) |
| 73 | 22 70 71 72 56 | ltletrd | |- ( ph -> 0 < ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |
| 74 | 73 8 | breqtrrdi | |- ( ph -> 0 < M ) |
| 75 | 74 | gt0ne0d | |- ( ph -> M =/= 0 ) |
| 76 | 69 75 | rereccld | |- ( ph -> ( 1 / M ) e. RR ) |
| 77 | 76 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 1 / M ) e. RR ) |
| 78 | 39 77 | readdcld | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( A + ( 1 / M ) ) e. RR ) |
| 79 | 2 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> B e. RR ) |
| 80 | 69 74 | elrpd | |- ( ph -> M e. RR+ ) |
| 81 | 80 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> M e. RR+ ) |
| 82 | 1red | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> 1 e. RR ) |
|
| 83 | 0le1 | |- 0 <_ 1 |
|
| 84 | 83 | a1i | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> 0 <_ 1 ) |
| 85 | 81 66 82 84 60 | lediv2ad | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 1 / j ) <_ ( 1 / M ) ) |
| 86 | 64 77 39 85 | leadd2dd | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( A + ( 1 / j ) ) <_ ( A + ( 1 / M ) ) ) |
| 87 | 8 | eqcomi | |- ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) = M |
| 88 | 87 | oveq2i | |- ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) = ( 1 / M ) |
| 89 | 88 76 | eqeltrid | |- ( ph -> ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) e. RR ) |
| 90 | 21 23 | elrpd | |- ( ph -> ( 1 / ( B - A ) ) e. RR+ ) |
| 91 | 71 73 | elrpd | |- ( ph -> ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) e. RR+ ) |
| 92 | 1rp | |- 1 e. RR+ |
|
| 93 | 92 | a1i | |- ( ph -> 1 e. RR+ ) |
| 94 | fllelt | |- ( ( 1 / ( B - A ) ) e. RR -> ( ( |_ ` ( 1 / ( B - A ) ) ) <_ ( 1 / ( B - A ) ) /\ ( 1 / ( B - A ) ) < ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) |
|
| 95 | 21 94 | syl | |- ( ph -> ( ( |_ ` ( 1 / ( B - A ) ) ) <_ ( 1 / ( B - A ) ) /\ ( 1 / ( B - A ) ) < ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) |
| 96 | 95 | simprd | |- ( ph -> ( 1 / ( B - A ) ) < ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |
| 97 | 90 91 93 96 | ltdiv2dd | |- ( ph -> ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) < ( 1 / ( 1 / ( B - A ) ) ) ) |
| 98 | 17 | recnd | |- ( ph -> ( B - A ) e. CC ) |
| 99 | 98 20 | recrecd | |- ( ph -> ( 1 / ( 1 / ( B - A ) ) ) = ( B - A ) ) |
| 100 | 97 99 | breqtrd | |- ( ph -> ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) < ( B - A ) ) |
| 101 | 89 17 1 100 | ltadd2dd | |- ( ph -> ( A + ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) < ( A + ( B - A ) ) ) |
| 102 | 8 | oveq2i | |- ( 1 / M ) = ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |
| 103 | 102 | oveq2i | |- ( A + ( 1 / M ) ) = ( A + ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) |
| 104 | 103 | a1i | |- ( ph -> ( A + ( 1 / M ) ) = ( A + ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) ) |
| 105 | 1 | recnd | |- ( ph -> A e. CC ) |
| 106 | 2 | recnd | |- ( ph -> B e. CC ) |
| 107 | 105 106 | pncan3d | |- ( ph -> ( A + ( B - A ) ) = B ) |
| 108 | 107 | eqcomd | |- ( ph -> B = ( A + ( B - A ) ) ) |
| 109 | 101 104 108 | 3brtr4d | |- ( ph -> ( A + ( 1 / M ) ) < B ) |
| 110 | 109 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( A + ( 1 / M ) ) < B ) |
| 111 | 65 78 79 86 110 | lelttrd | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( A + ( 1 / j ) ) < B ) |
| 112 | 36 38 65 68 111 | eliood | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( A + ( 1 / j ) ) e. ( A (,) B ) ) |
| 113 | 34 112 | ffvelcdmd | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( F ` ( A + ( 1 / j ) ) ) e. RR ) |
| 114 | 113 9 | fmptd | |- ( ph -> S : ( ZZ>= ` M ) --> RR ) |
| 115 | 1 2 3 4 5 6 | dvbdfbdioo | |- ( ph -> E. b e. RR A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) |
| 116 | 69 | adantr | |- ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) -> M e. RR ) |
| 117 | simpr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. ( ZZ>= ` M ) ) |
|
| 118 | 9 | fvmpt2 | |- ( ( j e. ( ZZ>= ` M ) /\ ( F ` ( A + ( 1 / j ) ) ) e. RR ) -> ( S ` j ) = ( F ` ( A + ( 1 / j ) ) ) ) |
| 119 | 117 113 118 | syl2anc | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( S ` j ) = ( F ` ( A + ( 1 / j ) ) ) ) |
| 120 | 119 | fveq2d | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( abs ` ( S ` j ) ) = ( abs ` ( F ` ( A + ( 1 / j ) ) ) ) ) |
| 121 | 120 | adantlr | |- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> ( abs ` ( S ` j ) ) = ( abs ` ( F ` ( A + ( 1 / j ) ) ) ) ) |
| 122 | simplr | |- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) |
|
| 123 | 112 | adantlr | |- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> ( A + ( 1 / j ) ) e. ( A (,) B ) ) |
| 124 | 2fveq3 | |- ( x = ( A + ( 1 / j ) ) -> ( abs ` ( F ` x ) ) = ( abs ` ( F ` ( A + ( 1 / j ) ) ) ) ) |
|
| 125 | 124 | breq1d | |- ( x = ( A + ( 1 / j ) ) -> ( ( abs ` ( F ` x ) ) <_ b <-> ( abs ` ( F ` ( A + ( 1 / j ) ) ) ) <_ b ) ) |
| 126 | 125 | rspccva | |- ( ( A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b /\ ( A + ( 1 / j ) ) e. ( A (,) B ) ) -> ( abs ` ( F ` ( A + ( 1 / j ) ) ) ) <_ b ) |
| 127 | 122 123 126 | syl2anc | |- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> ( abs ` ( F ` ( A + ( 1 / j ) ) ) ) <_ b ) |
| 128 | 121 127 | eqbrtrd | |- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> ( abs ` ( S ` j ) ) <_ b ) |
| 129 | 128 | a1d | |- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> ( M <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) |
| 130 | 129 | ralrimiva | |- ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) -> A. j e. ( ZZ>= ` M ) ( M <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) |
| 131 | breq1 | |- ( k = M -> ( k <_ j <-> M <_ j ) ) |
|
| 132 | 131 | imbi1d | |- ( k = M -> ( ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) <-> ( M <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) ) |
| 133 | 132 | ralbidv | |- ( k = M -> ( A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) <-> A. j e. ( ZZ>= ` M ) ( M <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) ) |
| 134 | 133 | rspcev | |- ( ( M e. RR /\ A. j e. ( ZZ>= ` M ) ( M <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) -> E. k e. RR A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) |
| 135 | 116 130 134 | syl2anc | |- ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) -> E. k e. RR A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) |
| 136 | 135 | ex | |- ( ph -> ( A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b -> E. k e. RR A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) ) |
| 137 | 136 | reximdv | |- ( ph -> ( E. b e. RR A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b -> E. b e. RR E. k e. RR A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) ) |
| 138 | 115 137 | mpd | |- ( ph -> E. b e. RR E. k e. RR A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) |
| 139 | 16 33 114 138 | limsupre | |- ( ph -> ( limsup ` S ) e. RR ) |
| 140 | 139 | recnd | |- ( ph -> ( limsup ` S ) e. CC ) |
| 141 | eluzelre | |- ( j e. ( ZZ>= ` N ) -> j e. RR ) |
|
| 142 | 141 | adantl | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> j e. RR ) |
| 143 | 0red | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> 0 e. RR ) |
|
| 144 | 52 | peano2zd | |- ( ph -> ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) e. ZZ ) |
| 145 | 8 144 | eqeltrid | |- ( ph -> M e. ZZ ) |
| 146 | 145 | adantr | |- ( ( ph /\ x e. RR+ ) -> M e. ZZ ) |
| 147 | 146 | zred | |- ( ( ph /\ x e. RR+ ) -> M e. RR ) |
| 148 | 147 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> M e. RR ) |
| 149 | 74 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> 0 < M ) |
| 150 | ioomidp | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
|
| 151 | 1 2 3 150 | syl3anc | |- ( ph -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
| 152 | ne0i | |- ( ( ( A + B ) / 2 ) e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
|
| 153 | 151 152 | syl | |- ( ph -> ( A (,) B ) =/= (/) ) |
| 154 | ioossre | |- ( A (,) B ) C_ RR |
|
| 155 | 154 | a1i | |- ( ph -> ( A (,) B ) C_ RR ) |
| 156 | dvfre | |- ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 157 | 4 155 156 | syl2anc | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 158 | 5 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
| 159 | 157 158 | mpbid | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 160 | 159 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
| 161 | 160 | recnd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 162 | 161 | abscld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) e. RR ) |
| 163 | eqid | |- ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) = ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) |
|
| 164 | eqid | |- sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) |
|
| 165 | 153 162 6 163 164 | suprnmpt | |- ( ph -> ( sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) e. RR /\ A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) ) |
| 166 | 165 | simpld | |- ( ph -> sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) e. RR ) |
| 167 | 7 166 | eqeltrid | |- ( ph -> Y e. RR ) |
| 168 | 167 | adantr | |- ( ( ph /\ x e. RR+ ) -> Y e. RR ) |
| 169 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 170 | 169 | rehalfcld | |- ( x e. RR+ -> ( x / 2 ) e. RR ) |
| 171 | 170 | adantl | |- ( ( ph /\ x e. RR+ ) -> ( x / 2 ) e. RR ) |
| 172 | 169 | recnd | |- ( x e. RR+ -> x e. CC ) |
| 173 | 172 | adantl | |- ( ( ph /\ x e. RR+ ) -> x e. CC ) |
| 174 | 2cnd | |- ( ( ph /\ x e. RR+ ) -> 2 e. CC ) |
|
| 175 | rpne0 | |- ( x e. RR+ -> x =/= 0 ) |
|
| 176 | 175 | adantl | |- ( ( ph /\ x e. RR+ ) -> x =/= 0 ) |
| 177 | 2ne0 | |- 2 =/= 0 |
|
| 178 | 177 | a1i | |- ( ( ph /\ x e. RR+ ) -> 2 =/= 0 ) |
| 179 | 173 174 176 178 | divne0d | |- ( ( ph /\ x e. RR+ ) -> ( x / 2 ) =/= 0 ) |
| 180 | 168 171 179 | redivcld | |- ( ( ph /\ x e. RR+ ) -> ( Y / ( x / 2 ) ) e. RR ) |
| 181 | 180 | flcld | |- ( ( ph /\ x e. RR+ ) -> ( |_ ` ( Y / ( x / 2 ) ) ) e. ZZ ) |
| 182 | 181 | peano2zd | |- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. ZZ ) |
| 183 | 182 146 | ifcld | |- ( ( ph /\ x e. RR+ ) -> if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) e. ZZ ) |
| 184 | 11 183 | eqeltrid | |- ( ( ph /\ x e. RR+ ) -> N e. ZZ ) |
| 185 | 184 | zred | |- ( ( ph /\ x e. RR+ ) -> N e. RR ) |
| 186 | 185 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> N e. RR ) |
| 187 | 182 | zred | |- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. RR ) |
| 188 | max1 | |- ( ( M e. RR /\ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. RR ) -> M <_ if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) ) |
|
| 189 | 147 187 188 | syl2anc | |- ( ( ph /\ x e. RR+ ) -> M <_ if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) ) |
| 190 | 189 11 | breqtrrdi | |- ( ( ph /\ x e. RR+ ) -> M <_ N ) |
| 191 | 190 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> M <_ N ) |
| 192 | eluzle | |- ( j e. ( ZZ>= ` N ) -> N <_ j ) |
|
| 193 | 192 | adantl | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> N <_ j ) |
| 194 | 148 186 142 191 193 | letrd | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> M <_ j ) |
| 195 | 143 148 142 149 194 | ltletrd | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> 0 < j ) |
| 196 | 195 | gt0ne0d | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> j =/= 0 ) |
| 197 | 142 196 | rereccld | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> ( 1 / j ) e. RR ) |
| 198 | 142 195 | recgt0d | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> 0 < ( 1 / j ) ) |
| 199 | 197 198 | elrpd | |- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> ( 1 / j ) e. RR+ ) |
| 200 | 199 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) -> ( 1 / j ) e. RR+ ) |
| 201 | 12 | biimpi | |- ( ch -> ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) ) |
| 202 | simp-5l | |- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) -> ph ) |
|
| 203 | 201 202 | syl | |- ( ch -> ph ) |
| 204 | 203 4 | syl | |- ( ch -> F : ( A (,) B ) --> RR ) |
| 205 | 201 | simplrd | |- ( ch -> z e. ( A (,) B ) ) |
| 206 | 204 205 | ffvelcdmd | |- ( ch -> ( F ` z ) e. RR ) |
| 207 | 206 | recnd | |- ( ch -> ( F ` z ) e. CC ) |
| 208 | 203 114 | syl | |- ( ch -> S : ( ZZ>= ` M ) --> RR ) |
| 209 | simp-5r | |- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) -> x e. RR+ ) |
|
| 210 | 201 209 | syl | |- ( ch -> x e. RR+ ) |
| 211 | eluz2 | |- ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) |
|
| 212 | 146 184 190 211 | syl3anbrc | |- ( ( ph /\ x e. RR+ ) -> N e. ( ZZ>= ` M ) ) |
| 213 | 203 210 212 | syl2anc | |- ( ch -> N e. ( ZZ>= ` M ) ) |
| 214 | uzss | |- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
|
| 215 | 213 214 | syl | |- ( ch -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 216 | simp-4r | |- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) -> j e. ( ZZ>= ` N ) ) |
|
| 217 | 201 216 | syl | |- ( ch -> j e. ( ZZ>= ` N ) ) |
| 218 | 215 217 | sseldd | |- ( ch -> j e. ( ZZ>= ` M ) ) |
| 219 | 208 218 | ffvelcdmd | |- ( ch -> ( S ` j ) e. RR ) |
| 220 | 219 | recnd | |- ( ch -> ( S ` j ) e. CC ) |
| 221 | 203 140 | syl | |- ( ch -> ( limsup ` S ) e. CC ) |
| 222 | 207 220 221 | npncand | |- ( ch -> ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) = ( ( F ` z ) - ( limsup ` S ) ) ) |
| 223 | 222 | eqcomd | |- ( ch -> ( ( F ` z ) - ( limsup ` S ) ) = ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) ) |
| 224 | 223 | fveq2d | |- ( ch -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) = ( abs ` ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) ) ) |
| 225 | 206 219 | resubcld | |- ( ch -> ( ( F ` z ) - ( S ` j ) ) e. RR ) |
| 226 | 203 139 | syl | |- ( ch -> ( limsup ` S ) e. RR ) |
| 227 | 219 226 | resubcld | |- ( ch -> ( ( S ` j ) - ( limsup ` S ) ) e. RR ) |
| 228 | 225 227 | readdcld | |- ( ch -> ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) e. RR ) |
| 229 | 228 | recnd | |- ( ch -> ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) e. CC ) |
| 230 | 229 | abscld | |- ( ch -> ( abs ` ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) ) e. RR ) |
| 231 | 225 | recnd | |- ( ch -> ( ( F ` z ) - ( S ` j ) ) e. CC ) |
| 232 | 231 | abscld | |- ( ch -> ( abs ` ( ( F ` z ) - ( S ` j ) ) ) e. RR ) |
| 233 | 227 | recnd | |- ( ch -> ( ( S ` j ) - ( limsup ` S ) ) e. CC ) |
| 234 | 233 | abscld | |- ( ch -> ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) e. RR ) |
| 235 | 232 234 | readdcld | |- ( ch -> ( ( abs ` ( ( F ` z ) - ( S ` j ) ) ) + ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) ) e. RR ) |
| 236 | 210 | rpred | |- ( ch -> x e. RR ) |
| 237 | 231 233 | abstrid | |- ( ch -> ( abs ` ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) ) <_ ( ( abs ` ( ( F ` z ) - ( S ` j ) ) ) + ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) ) ) |
| 238 | 236 | rehalfcld | |- ( ch -> ( x / 2 ) e. RR ) |
| 239 | 207 220 | abssubd | |- ( ch -> ( abs ` ( ( F ` z ) - ( S ` j ) ) ) = ( abs ` ( ( S ` j ) - ( F ` z ) ) ) ) |
| 240 | 203 218 119 | syl2anc | |- ( ch -> ( S ` j ) = ( F ` ( A + ( 1 / j ) ) ) ) |
| 241 | 240 | fvoveq1d | |- ( ch -> ( abs ` ( ( S ` j ) - ( F ` z ) ) ) = ( abs ` ( ( F ` ( A + ( 1 / j ) ) ) - ( F ` z ) ) ) ) |
| 242 | 203 218 113 | syl2anc | |- ( ch -> ( F ` ( A + ( 1 / j ) ) ) e. RR ) |
| 243 | 242 206 | resubcld | |- ( ch -> ( ( F ` ( A + ( 1 / j ) ) ) - ( F ` z ) ) e. RR ) |
| 244 | 243 | recnd | |- ( ch -> ( ( F ` ( A + ( 1 / j ) ) ) - ( F ` z ) ) e. CC ) |
| 245 | 244 | abscld | |- ( ch -> ( abs ` ( ( F ` ( A + ( 1 / j ) ) ) - ( F ` z ) ) ) e. RR ) |
| 246 | 203 167 | syl | |- ( ch -> Y e. RR ) |
| 247 | 203 218 65 | syl2anc | |- ( ch -> ( A + ( 1 / j ) ) e. RR ) |
| 248 | 154 205 | sselid | |- ( ch -> z e. RR ) |
| 249 | 247 248 | resubcld | |- ( ch -> ( ( A + ( 1 / j ) ) - z ) e. RR ) |
| 250 | 246 249 | remulcld | |- ( ch -> ( Y x. ( ( A + ( 1 / j ) ) - z ) ) e. RR ) |
| 251 | 203 1 | syl | |- ( ch -> A e. RR ) |
| 252 | 203 2 | syl | |- ( ch -> B e. RR ) |
| 253 | 203 5 | syl | |- ( ch -> dom ( RR _D F ) = ( A (,) B ) ) |
| 254 | 165 | simprd | |- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 255 | 7 | breq2i | |- ( ( abs ` ( ( RR _D F ) ` x ) ) <_ Y <-> ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 256 | 255 | ralbii | |- ( A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ Y <-> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 257 | 254 256 | sylibr | |- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ Y ) |
| 258 | 203 257 | syl | |- ( ch -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ Y ) |
| 259 | 2fveq3 | |- ( w = x -> ( abs ` ( ( RR _D F ) ` w ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
|
| 260 | 259 | breq1d | |- ( w = x -> ( ( abs ` ( ( RR _D F ) ` w ) ) <_ Y <-> ( abs ` ( ( RR _D F ) ` x ) ) <_ Y ) ) |
| 261 | 260 | cbvralvw | |- ( A. w e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` w ) ) <_ Y <-> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ Y ) |
| 262 | 258 261 | sylibr | |- ( ch -> A. w e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` w ) ) <_ Y ) |
| 263 | 248 | rexrd | |- ( ch -> z e. RR* ) |
| 264 | 203 37 | syl | |- ( ch -> B e. RR* ) |
| 265 | 248 251 | resubcld | |- ( ch -> ( z - A ) e. RR ) |
| 266 | 265 | recnd | |- ( ch -> ( z - A ) e. CC ) |
| 267 | 266 | abscld | |- ( ch -> ( abs ` ( z - A ) ) e. RR ) |
| 268 | 15 218 | sselid | |- ( ch -> j e. RR ) |
| 269 | 203 218 63 | syl2anc | |- ( ch -> j =/= 0 ) |
| 270 | 268 269 | rereccld | |- ( ch -> ( 1 / j ) e. RR ) |
| 271 | 265 | leabsd | |- ( ch -> ( z - A ) <_ ( abs ` ( z - A ) ) ) |
| 272 | 201 | simprd | |- ( ch -> ( abs ` ( z - A ) ) < ( 1 / j ) ) |
| 273 | 265 267 270 271 272 | lelttrd | |- ( ch -> ( z - A ) < ( 1 / j ) ) |
| 274 | 248 251 270 | ltsubadd2d | |- ( ch -> ( ( z - A ) < ( 1 / j ) <-> z < ( A + ( 1 / j ) ) ) ) |
| 275 | 273 274 | mpbid | |- ( ch -> z < ( A + ( 1 / j ) ) ) |
| 276 | 203 218 111 | syl2anc | |- ( ch -> ( A + ( 1 / j ) ) < B ) |
| 277 | 263 264 247 275 276 | eliood | |- ( ch -> ( A + ( 1 / j ) ) e. ( z (,) B ) ) |
| 278 | 251 252 204 253 246 262 205 277 | dvbdfbdioolem1 | |- ( ch -> ( ( abs ` ( ( F ` ( A + ( 1 / j ) ) ) - ( F ` z ) ) ) <_ ( Y x. ( ( A + ( 1 / j ) ) - z ) ) /\ ( abs ` ( ( F ` ( A + ( 1 / j ) ) ) - ( F ` z ) ) ) <_ ( Y x. ( B - A ) ) ) ) |
| 279 | 278 | simpld | |- ( ch -> ( abs ` ( ( F ` ( A + ( 1 / j ) ) ) - ( F ` z ) ) ) <_ ( Y x. ( ( A + ( 1 / j ) ) - z ) ) ) |
| 280 | 203 218 64 | syl2anc | |- ( ch -> ( 1 / j ) e. RR ) |
| 281 | 246 280 | remulcld | |- ( ch -> ( Y x. ( 1 / j ) ) e. RR ) |
| 282 | 159 151 | ffvelcdmd | |- ( ph -> ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) e. RR ) |
| 283 | 282 | recnd | |- ( ph -> ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) e. CC ) |
| 284 | 283 | abscld | |- ( ph -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) e. RR ) |
| 285 | 283 | absge0d | |- ( ph -> 0 <_ ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) ) |
| 286 | 2fveq3 | |- ( x = ( ( A + B ) / 2 ) -> ( abs ` ( ( RR _D F ) ` x ) ) = ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) ) |
|
| 287 | 7 | eqcomi | |- sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) = Y |
| 288 | 287 | a1i | |- ( x = ( ( A + B ) / 2 ) -> sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) = Y ) |
| 289 | 286 288 | breq12d | |- ( x = ( ( A + B ) / 2 ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) <-> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ Y ) ) |
| 290 | 289 | rspcva | |- ( ( ( ( A + B ) / 2 ) e. ( A (,) B ) /\ A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ Y ) |
| 291 | 151 254 290 | syl2anc | |- ( ph -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ Y ) |
| 292 | 22 284 167 285 291 | letrd | |- ( ph -> 0 <_ Y ) |
| 293 | 203 292 | syl | |- ( ch -> 0 <_ Y ) |
| 294 | 203 35 | syl | |- ( ch -> A e. RR* ) |
| 295 | ioogtlb | |- ( ( A e. RR* /\ B e. RR* /\ z e. ( A (,) B ) ) -> A < z ) |
|
| 296 | 294 264 205 295 | syl3anc | |- ( ch -> A < z ) |
| 297 | 251 248 247 296 | ltsub2dd | |- ( ch -> ( ( A + ( 1 / j ) ) - z ) < ( ( A + ( 1 / j ) ) - A ) ) |
| 298 | 203 105 | syl | |- ( ch -> A e. CC ) |
| 299 | 280 | recnd | |- ( ch -> ( 1 / j ) e. CC ) |
| 300 | 298 299 | pncan2d | |- ( ch -> ( ( A + ( 1 / j ) ) - A ) = ( 1 / j ) ) |
| 301 | 297 300 | breqtrd | |- ( ch -> ( ( A + ( 1 / j ) ) - z ) < ( 1 / j ) ) |
| 302 | 249 270 301 | ltled | |- ( ch -> ( ( A + ( 1 / j ) ) - z ) <_ ( 1 / j ) ) |
| 303 | 249 270 246 293 302 | lemul2ad | |- ( ch -> ( Y x. ( ( A + ( 1 / j ) ) - z ) ) <_ ( Y x. ( 1 / j ) ) ) |
| 304 | 281 | adantr | |- ( ( ch /\ Y = 0 ) -> ( Y x. ( 1 / j ) ) e. RR ) |
| 305 | 238 | adantr | |- ( ( ch /\ Y = 0 ) -> ( x / 2 ) e. RR ) |
| 306 | oveq1 | |- ( Y = 0 -> ( Y x. ( 1 / j ) ) = ( 0 x. ( 1 / j ) ) ) |
|
| 307 | 299 | mul02d | |- ( ch -> ( 0 x. ( 1 / j ) ) = 0 ) |
| 308 | 306 307 | sylan9eqr | |- ( ( ch /\ Y = 0 ) -> ( Y x. ( 1 / j ) ) = 0 ) |
| 309 | 210 | rphalfcld | |- ( ch -> ( x / 2 ) e. RR+ ) |
| 310 | 309 | rpgt0d | |- ( ch -> 0 < ( x / 2 ) ) |
| 311 | 310 | adantr | |- ( ( ch /\ Y = 0 ) -> 0 < ( x / 2 ) ) |
| 312 | 308 311 | eqbrtrd | |- ( ( ch /\ Y = 0 ) -> ( Y x. ( 1 / j ) ) < ( x / 2 ) ) |
| 313 | 304 305 312 | ltled | |- ( ( ch /\ Y = 0 ) -> ( Y x. ( 1 / j ) ) <_ ( x / 2 ) ) |
| 314 | 246 | adantr | |- ( ( ch /\ -. Y = 0 ) -> Y e. RR ) |
| 315 | 293 | adantr | |- ( ( ch /\ -. Y = 0 ) -> 0 <_ Y ) |
| 316 | neqne | |- ( -. Y = 0 -> Y =/= 0 ) |
|
| 317 | 316 | adantl | |- ( ( ch /\ -. Y = 0 ) -> Y =/= 0 ) |
| 318 | 314 315 317 | ne0gt0d | |- ( ( ch /\ -. Y = 0 ) -> 0 < Y ) |
| 319 | 281 | adantr | |- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / j ) ) e. RR ) |
| 320 | 15 213 | sselid | |- ( ch -> N e. RR ) |
| 321 | 0red | |- ( ch -> 0 e. RR ) |
|
| 322 | 203 210 147 | syl2anc | |- ( ch -> M e. RR ) |
| 323 | 203 74 | syl | |- ( ch -> 0 < M ) |
| 324 | 203 210 190 | syl2anc | |- ( ch -> M <_ N ) |
| 325 | 321 322 320 323 324 | ltletrd | |- ( ch -> 0 < N ) |
| 326 | 325 | gt0ne0d | |- ( ch -> N =/= 0 ) |
| 327 | 320 326 | rereccld | |- ( ch -> ( 1 / N ) e. RR ) |
| 328 | 246 327 | remulcld | |- ( ch -> ( Y x. ( 1 / N ) ) e. RR ) |
| 329 | 328 | adantr | |- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / N ) ) e. RR ) |
| 330 | 238 | adantr | |- ( ( ch /\ 0 < Y ) -> ( x / 2 ) e. RR ) |
| 331 | 280 | adantr | |- ( ( ch /\ 0 < Y ) -> ( 1 / j ) e. RR ) |
| 332 | 327 | adantr | |- ( ( ch /\ 0 < Y ) -> ( 1 / N ) e. RR ) |
| 333 | 246 | adantr | |- ( ( ch /\ 0 < Y ) -> Y e. RR ) |
| 334 | 293 | adantr | |- ( ( ch /\ 0 < Y ) -> 0 <_ Y ) |
| 335 | 320 325 | elrpd | |- ( ch -> N e. RR+ ) |
| 336 | 203 218 66 | syl2anc | |- ( ch -> j e. RR+ ) |
| 337 | 1red | |- ( ch -> 1 e. RR ) |
|
| 338 | 83 | a1i | |- ( ch -> 0 <_ 1 ) |
| 339 | 217 192 | syl | |- ( ch -> N <_ j ) |
| 340 | 335 336 337 338 339 | lediv2ad | |- ( ch -> ( 1 / j ) <_ ( 1 / N ) ) |
| 341 | 340 | adantr | |- ( ( ch /\ 0 < Y ) -> ( 1 / j ) <_ ( 1 / N ) ) |
| 342 | 331 332 333 334 341 | lemul2ad | |- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / j ) ) <_ ( Y x. ( 1 / N ) ) ) |
| 343 | 236 | recnd | |- ( ch -> x e. CC ) |
| 344 | 2cnd | |- ( ch -> 2 e. CC ) |
|
| 345 | 210 | rpne0d | |- ( ch -> x =/= 0 ) |
| 346 | 177 | a1i | |- ( ch -> 2 =/= 0 ) |
| 347 | 343 344 345 346 | divne0d | |- ( ch -> ( x / 2 ) =/= 0 ) |
| 348 | 246 238 347 | redivcld | |- ( ch -> ( Y / ( x / 2 ) ) e. RR ) |
| 349 | 348 | adantr | |- ( ( ch /\ 0 < Y ) -> ( Y / ( x / 2 ) ) e. RR ) |
| 350 | simpr | |- ( ( ch /\ 0 < Y ) -> 0 < Y ) |
|
| 351 | 310 | adantr | |- ( ( ch /\ 0 < Y ) -> 0 < ( x / 2 ) ) |
| 352 | 333 330 350 351 | divgt0d | |- ( ( ch /\ 0 < Y ) -> 0 < ( Y / ( x / 2 ) ) ) |
| 353 | 349 352 | elrpd | |- ( ( ch /\ 0 < Y ) -> ( Y / ( x / 2 ) ) e. RR+ ) |
| 354 | 353 | rprecred | |- ( ( ch /\ 0 < Y ) -> ( 1 / ( Y / ( x / 2 ) ) ) e. RR ) |
| 355 | 335 | adantr | |- ( ( ch /\ 0 < Y ) -> N e. RR+ ) |
| 356 | 1red | |- ( ( ch /\ 0 < Y ) -> 1 e. RR ) |
|
| 357 | 83 | a1i | |- ( ( ch /\ 0 < Y ) -> 0 <_ 1 ) |
| 358 | 348 | flcld | |- ( ch -> ( |_ ` ( Y / ( x / 2 ) ) ) e. ZZ ) |
| 359 | 358 | peano2zd | |- ( ch -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. ZZ ) |
| 360 | 359 | zred | |- ( ch -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. RR ) |
| 361 | 203 145 | syl | |- ( ch -> M e. ZZ ) |
| 362 | 359 361 | ifcld | |- ( ch -> if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) e. ZZ ) |
| 363 | 11 362 | eqeltrid | |- ( ch -> N e. ZZ ) |
| 364 | 363 | zred | |- ( ch -> N e. RR ) |
| 365 | flltp1 | |- ( ( Y / ( x / 2 ) ) e. RR -> ( Y / ( x / 2 ) ) < ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) ) |
|
| 366 | 348 365 | syl | |- ( ch -> ( Y / ( x / 2 ) ) < ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) ) |
| 367 | 203 69 | syl | |- ( ch -> M e. RR ) |
| 368 | max2 | |- ( ( M e. RR /\ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. RR ) -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) <_ if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) ) |
|
| 369 | 367 360 368 | syl2anc | |- ( ch -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) <_ if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) ) |
| 370 | 369 11 | breqtrrdi | |- ( ch -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) <_ N ) |
| 371 | 348 360 364 366 370 | ltletrd | |- ( ch -> ( Y / ( x / 2 ) ) < N ) |
| 372 | 348 320 371 | ltled | |- ( ch -> ( Y / ( x / 2 ) ) <_ N ) |
| 373 | 372 | adantr | |- ( ( ch /\ 0 < Y ) -> ( Y / ( x / 2 ) ) <_ N ) |
| 374 | 353 355 356 357 373 | lediv2ad | |- ( ( ch /\ 0 < Y ) -> ( 1 / N ) <_ ( 1 / ( Y / ( x / 2 ) ) ) ) |
| 375 | 332 354 333 334 374 | lemul2ad | |- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / N ) ) <_ ( Y x. ( 1 / ( Y / ( x / 2 ) ) ) ) ) |
| 376 | 333 | recnd | |- ( ( ch /\ 0 < Y ) -> Y e. CC ) |
| 377 | 349 | recnd | |- ( ( ch /\ 0 < Y ) -> ( Y / ( x / 2 ) ) e. CC ) |
| 378 | 352 | gt0ne0d | |- ( ( ch /\ 0 < Y ) -> ( Y / ( x / 2 ) ) =/= 0 ) |
| 379 | 376 377 378 | divrecd | |- ( ( ch /\ 0 < Y ) -> ( Y / ( Y / ( x / 2 ) ) ) = ( Y x. ( 1 / ( Y / ( x / 2 ) ) ) ) ) |
| 380 | 330 | recnd | |- ( ( ch /\ 0 < Y ) -> ( x / 2 ) e. CC ) |
| 381 | 350 | gt0ne0d | |- ( ( ch /\ 0 < Y ) -> Y =/= 0 ) |
| 382 | 347 | adantr | |- ( ( ch /\ 0 < Y ) -> ( x / 2 ) =/= 0 ) |
| 383 | 376 380 381 382 | ddcand | |- ( ( ch /\ 0 < Y ) -> ( Y / ( Y / ( x / 2 ) ) ) = ( x / 2 ) ) |
| 384 | 379 383 | eqtr3d | |- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / ( Y / ( x / 2 ) ) ) ) = ( x / 2 ) ) |
| 385 | 375 384 | breqtrd | |- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / N ) ) <_ ( x / 2 ) ) |
| 386 | 319 329 330 342 385 | letrd | |- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / j ) ) <_ ( x / 2 ) ) |
| 387 | 318 386 | syldan | |- ( ( ch /\ -. Y = 0 ) -> ( Y x. ( 1 / j ) ) <_ ( x / 2 ) ) |
| 388 | 313 387 | pm2.61dan | |- ( ch -> ( Y x. ( 1 / j ) ) <_ ( x / 2 ) ) |
| 389 | 250 281 238 303 388 | letrd | |- ( ch -> ( Y x. ( ( A + ( 1 / j ) ) - z ) ) <_ ( x / 2 ) ) |
| 390 | 245 250 238 279 389 | letrd | |- ( ch -> ( abs ` ( ( F ` ( A + ( 1 / j ) ) ) - ( F ` z ) ) ) <_ ( x / 2 ) ) |
| 391 | 241 390 | eqbrtrd | |- ( ch -> ( abs ` ( ( S ` j ) - ( F ` z ) ) ) <_ ( x / 2 ) ) |
| 392 | 239 391 | eqbrtrd | |- ( ch -> ( abs ` ( ( F ` z ) - ( S ` j ) ) ) <_ ( x / 2 ) ) |
| 393 | simpllr | |- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) -> ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
|
| 394 | 201 393 | syl | |- ( ch -> ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 395 | 232 234 238 238 392 394 | leltaddd | |- ( ch -> ( ( abs ` ( ( F ` z ) - ( S ` j ) ) ) + ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) ) < ( ( x / 2 ) + ( x / 2 ) ) ) |
| 396 | 343 | 2halvesd | |- ( ch -> ( ( x / 2 ) + ( x / 2 ) ) = x ) |
| 397 | 395 396 | breqtrd | |- ( ch -> ( ( abs ` ( ( F ` z ) - ( S ` j ) ) ) + ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) ) < x ) |
| 398 | 230 235 236 237 397 | lelttrd | |- ( ch -> ( abs ` ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) ) < x ) |
| 399 | 224 398 | eqbrtrd | |- ( ch -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) |
| 400 | 12 399 | sylbir | |- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) |
| 401 | 400 | adantrl | |- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( z =/= A /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) |
| 402 | 401 | ex | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) -> ( ( z =/= A /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 403 | 402 | ralrimiva | |- ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) -> A. z e. ( A (,) B ) ( ( z =/= A /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 404 | brimralrspcev | |- ( ( ( 1 / j ) e. RR+ /\ A. z e. ( A (,) B ) ( ( z =/= A /\ ( abs ` ( z - A ) ) < ( 1 / j ) ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) -> E. y e. RR+ A. z e. ( A (,) B ) ( ( z =/= A /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
|
| 405 | 200 403 404 | syl2anc | |- ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) -> E. y e. RR+ A. z e. ( A (,) B ) ( ( z =/= A /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 406 | simpr | |- ( ( ( ph /\ x e. RR+ ) /\ b <_ N ) -> b <_ N ) |
|
| 407 | 406 | iftrued | |- ( ( ( ph /\ x e. RR+ ) /\ b <_ N ) -> if ( b <_ N , N , b ) = N ) |
| 408 | uzid | |- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
|
| 409 | 184 408 | syl | |- ( ( ph /\ x e. RR+ ) -> N e. ( ZZ>= ` N ) ) |
| 410 | 409 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ b <_ N ) -> N e. ( ZZ>= ` N ) ) |
| 411 | 407 410 | eqeltrd | |- ( ( ( ph /\ x e. RR+ ) /\ b <_ N ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` N ) ) |
| 412 | 411 | adantlr | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ b <_ N ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` N ) ) |
| 413 | iffalse | |- ( -. b <_ N -> if ( b <_ N , N , b ) = b ) |
|
| 414 | 413 | adantl | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> if ( b <_ N , N , b ) = b ) |
| 415 | 184 | ad2antrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> N e. ZZ ) |
| 416 | simplr | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> b e. ZZ ) |
|
| 417 | 415 | zred | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> N e. RR ) |
| 418 | 416 | zred | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> b e. RR ) |
| 419 | simpr | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> -. b <_ N ) |
|
| 420 | 417 418 | ltnled | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> ( N < b <-> -. b <_ N ) ) |
| 421 | 419 420 | mpbird | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> N < b ) |
| 422 | 417 418 421 | ltled | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> N <_ b ) |
| 423 | eluz2 | |- ( b e. ( ZZ>= ` N ) <-> ( N e. ZZ /\ b e. ZZ /\ N <_ b ) ) |
|
| 424 | 415 416 422 423 | syl3anbrc | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> b e. ( ZZ>= ` N ) ) |
| 425 | 414 424 | eqeltrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` N ) ) |
| 426 | 412 425 | pm2.61dan | |- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` N ) ) |
| 427 | 426 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` N ) ) |
| 428 | simpr | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
|
| 429 | simpr | |- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> b e. ZZ ) |
|
| 430 | 184 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> N e. ZZ ) |
| 431 | 430 429 | ifcld | |- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> if ( b <_ N , N , b ) e. ZZ ) |
| 432 | 429 | zred | |- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> b e. RR ) |
| 433 | 430 | zred | |- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> N e. RR ) |
| 434 | max1 | |- ( ( b e. RR /\ N e. RR ) -> b <_ if ( b <_ N , N , b ) ) |
|
| 435 | 432 433 434 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> b <_ if ( b <_ N , N , b ) ) |
| 436 | eluz2 | |- ( if ( b <_ N , N , b ) e. ( ZZ>= ` b ) <-> ( b e. ZZ /\ if ( b <_ N , N , b ) e. ZZ /\ b <_ if ( b <_ N , N , b ) ) ) |
|
| 437 | 429 431 435 436 | syl3anbrc | |- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` b ) ) |
| 438 | 437 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` b ) ) |
| 439 | fveq2 | |- ( c = if ( b <_ N , N , b ) -> ( S ` c ) = ( S ` if ( b <_ N , N , b ) ) ) |
|
| 440 | 439 | eleq1d | |- ( c = if ( b <_ N , N , b ) -> ( ( S ` c ) e. CC <-> ( S ` if ( b <_ N , N , b ) ) e. CC ) ) |
| 441 | 439 | fvoveq1d | |- ( c = if ( b <_ N , N , b ) -> ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) = ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) ) |
| 442 | 441 | breq1d | |- ( c = if ( b <_ N , N , b ) -> ( ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) <-> ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 443 | 440 442 | anbi12d | |- ( c = if ( b <_ N , N , b ) -> ( ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) <-> ( ( S ` if ( b <_ N , N , b ) ) e. CC /\ ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) ) |
| 444 | 443 | rspccva | |- ( ( A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ if ( b <_ N , N , b ) e. ( ZZ>= ` b ) ) -> ( ( S ` if ( b <_ N , N , b ) ) e. CC /\ ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 445 | 428 438 444 | syl2anc | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> ( ( S ` if ( b <_ N , N , b ) ) e. CC /\ ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 446 | 445 | simprd | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 447 | fveq2 | |- ( j = if ( b <_ N , N , b ) -> ( S ` j ) = ( S ` if ( b <_ N , N , b ) ) ) |
|
| 448 | 447 | fvoveq1d | |- ( j = if ( b <_ N , N , b ) -> ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) = ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) ) |
| 449 | 448 | breq1d | |- ( j = if ( b <_ N , N , b ) -> ( ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) <-> ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 450 | 449 | rspcev | |- ( ( if ( b <_ N , N , b ) e. ( ZZ>= ` N ) /\ ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) -> E. j e. ( ZZ>= ` N ) ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 451 | 427 446 450 | syl2anc | |- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> E. j e. ( ZZ>= ` N ) ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 452 | ax-resscn | |- RR C_ CC |
|
| 453 | 452 | a1i | |- ( ph -> RR C_ CC ) |
| 454 | 4 453 | fssd | |- ( ph -> F : ( A (,) B ) --> CC ) |
| 455 | dvcn | |- ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC /\ ( A (,) B ) C_ RR ) /\ dom ( RR _D F ) = ( A (,) B ) ) -> F e. ( ( A (,) B ) -cn-> CC ) ) |
|
| 456 | 453 454 155 5 455 | syl31anc | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 457 | cncfcdm | |- ( ( RR C_ CC /\ F e. ( ( A (,) B ) -cn-> CC ) ) -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
|
| 458 | 453 456 457 | syl2anc | |- ( ph -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
| 459 | 4 458 | mpbird | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
| 460 | 112 10 | fmptd | |- ( ph -> R : ( ZZ>= ` M ) --> ( A (,) B ) ) |
| 461 | eqid | |- ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) = ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) |
|
| 462 | climrel | |- Rel ~~> |
|
| 463 | 462 | a1i | |- ( ph -> Rel ~~> ) |
| 464 | fvex | |- ( ZZ>= ` M ) e. _V |
|
| 465 | 464 | mptex | |- ( j e. ( ZZ>= ` M ) |-> A ) e. _V |
| 466 | 465 | a1i | |- ( ph -> ( j e. ( ZZ>= ` M ) |-> A ) e. _V ) |
| 467 | eqidd | |- ( ( ph /\ m e. ( ZZ>= ` M ) ) -> ( j e. ( ZZ>= ` M ) |-> A ) = ( j e. ( ZZ>= ` M ) |-> A ) ) |
|
| 468 | eqidd | |- ( ( ( ph /\ m e. ( ZZ>= ` M ) ) /\ j = m ) -> A = A ) |
|
| 469 | simpr | |- ( ( ph /\ m e. ( ZZ>= ` M ) ) -> m e. ( ZZ>= ` M ) ) |
|
| 470 | 1 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` M ) ) -> A e. RR ) |
| 471 | 467 468 469 470 | fvmptd | |- ( ( ph /\ m e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> A ) ` m ) = A ) |
| 472 | 31 145 466 105 471 | climconst | |- ( ph -> ( j e. ( ZZ>= ` M ) |-> A ) ~~> A ) |
| 473 | 464 | mptex | |- ( j e. ( ZZ>= ` M ) |-> ( A + ( 1 / j ) ) ) e. _V |
| 474 | 10 473 | eqeltri | |- R e. _V |
| 475 | 474 | a1i | |- ( ph -> R e. _V ) |
| 476 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 477 | elnnnn0b | |- ( M e. NN <-> ( M e. NN0 /\ 0 < M ) ) |
|
| 478 | 29 74 477 | sylanbrc | |- ( ph -> M e. NN ) |
| 479 | divcnvg | |- ( ( 1 e. CC /\ M e. NN ) -> ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ~~> 0 ) |
|
| 480 | 476 478 479 | syl2anc | |- ( ph -> ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ~~> 0 ) |
| 481 | eqidd | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( j e. ( ZZ>= ` M ) |-> A ) = ( j e. ( ZZ>= ` M ) |-> A ) ) |
|
| 482 | eqidd | |- ( ( ( ph /\ i e. ( ZZ>= ` M ) ) /\ j = i ) -> A = A ) |
|
| 483 | simpr | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> i e. ( ZZ>= ` M ) ) |
|
| 484 | 1 | adantr | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> A e. RR ) |
| 485 | 481 482 483 484 | fvmptd | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> A ) ` i ) = A ) |
| 486 | 105 | adantr | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> A e. CC ) |
| 487 | 485 486 | eqeltrd | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> A ) ` i ) e. CC ) |
| 488 | eqidd | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) = ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ) |
|
| 489 | oveq2 | |- ( j = i -> ( 1 / j ) = ( 1 / i ) ) |
|
| 490 | 489 | adantl | |- ( ( ( ph /\ i e. ( ZZ>= ` M ) ) /\ j = i ) -> ( 1 / j ) = ( 1 / i ) ) |
| 491 | 15 483 | sselid | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> i e. RR ) |
| 492 | 0red | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> 0 e. RR ) |
|
| 493 | 69 | adantr | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> M e. RR ) |
| 494 | 74 | adantr | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> 0 < M ) |
| 495 | eluzle | |- ( i e. ( ZZ>= ` M ) -> M <_ i ) |
|
| 496 | 495 | adantl | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> M <_ i ) |
| 497 | 492 493 491 494 496 | ltletrd | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> 0 < i ) |
| 498 | 497 | gt0ne0d | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> i =/= 0 ) |
| 499 | 491 498 | rereccld | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( 1 / i ) e. RR ) |
| 500 | 488 490 483 499 | fvmptd | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ` i ) = ( 1 / i ) ) |
| 501 | 491 | recnd | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> i e. CC ) |
| 502 | 501 498 | reccld | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( 1 / i ) e. CC ) |
| 503 | 500 502 | eqeltrd | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ` i ) e. CC ) |
| 504 | 489 | oveq2d | |- ( j = i -> ( A + ( 1 / j ) ) = ( A + ( 1 / i ) ) ) |
| 505 | 484 499 | readdcld | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( A + ( 1 / i ) ) e. RR ) |
| 506 | 10 504 483 505 | fvmptd3 | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( R ` i ) = ( A + ( 1 / i ) ) ) |
| 507 | 485 500 | oveq12d | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( ( j e. ( ZZ>= ` M ) |-> A ) ` i ) + ( ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ` i ) ) = ( A + ( 1 / i ) ) ) |
| 508 | 506 507 | eqtr4d | |- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( R ` i ) = ( ( ( j e. ( ZZ>= ` M ) |-> A ) ` i ) + ( ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ` i ) ) ) |
| 509 | 31 145 472 475 480 487 503 508 | climadd | |- ( ph -> R ~~> ( A + 0 ) ) |
| 510 | 105 | addridd | |- ( ph -> ( A + 0 ) = A ) |
| 511 | 509 510 | breqtrd | |- ( ph -> R ~~> A ) |
| 512 | releldm | |- ( ( Rel ~~> /\ R ~~> A ) -> R e. dom ~~> ) |
|
| 513 | 463 511 512 | syl2anc | |- ( ph -> R e. dom ~~> ) |
| 514 | fveq2 | |- ( l = k -> ( ZZ>= ` l ) = ( ZZ>= ` k ) ) |
|
| 515 | fveq2 | |- ( l = k -> ( R ` l ) = ( R ` k ) ) |
|
| 516 | 515 | oveq2d | |- ( l = k -> ( ( R ` h ) - ( R ` l ) ) = ( ( R ` h ) - ( R ` k ) ) ) |
| 517 | 516 | fveq2d | |- ( l = k -> ( abs ` ( ( R ` h ) - ( R ` l ) ) ) = ( abs ` ( ( R ` h ) - ( R ` k ) ) ) ) |
| 518 | 517 | breq1d | |- ( l = k -> ( ( abs ` ( ( R ` h ) - ( R ` l ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 519 | 514 518 | raleqbidv | |- ( l = k -> ( A. h e. ( ZZ>= ` l ) ( abs ` ( ( R ` h ) - ( R ` l ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 520 | 519 | cbvrabv | |- { l e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` l ) ( abs ` ( ( R ` h ) - ( R ` l ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } = { k e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } |
| 521 | fveq2 | |- ( h = i -> ( R ` h ) = ( R ` i ) ) |
|
| 522 | 521 | fvoveq1d | |- ( h = i -> ( abs ` ( ( R ` h ) - ( R ` k ) ) ) = ( abs ` ( ( R ` i ) - ( R ` k ) ) ) ) |
| 523 | 522 | breq1d | |- ( h = i -> ( ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 524 | 523 | cbvralvw | |- ( A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 525 | 524 | rgenw | |- A. k e. ( ZZ>= ` M ) ( A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 526 | rabbi | |- ( A. k e. ( ZZ>= ` M ) ( A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) <-> { k e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } = { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } ) |
|
| 527 | 525 526 | mpbi | |- { k e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } = { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } |
| 528 | 520 527 | eqtri | |- { l e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` l ) ( abs ` ( ( R ` h ) - ( R ` l ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } = { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } |
| 529 | 528 | infeq1i | |- inf ( { l e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` l ) ( abs ` ( ( R ` h ) - ( R ` l ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) = inf ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) |
| 530 | 1 2 3 459 5 6 30 460 461 513 529 | ioodvbdlimc1lem1 | |- ( ph -> ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) ~~> ( limsup ` ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) ) ) |
| 531 | 10 | fvmpt2 | |- ( ( j e. ( ZZ>= ` M ) /\ ( A + ( 1 / j ) ) e. RR ) -> ( R ` j ) = ( A + ( 1 / j ) ) ) |
| 532 | 117 65 531 | syl2anc | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( R ` j ) = ( A + ( 1 / j ) ) ) |
| 533 | 532 | eqcomd | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( A + ( 1 / j ) ) = ( R ` j ) ) |
| 534 | 533 | fveq2d | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( F ` ( A + ( 1 / j ) ) ) = ( F ` ( R ` j ) ) ) |
| 535 | 534 | mpteq2dva | |- ( ph -> ( j e. ( ZZ>= ` M ) |-> ( F ` ( A + ( 1 / j ) ) ) ) = ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) ) |
| 536 | 9 535 | eqtrid | |- ( ph -> S = ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) ) |
| 537 | 536 | fveq2d | |- ( ph -> ( limsup ` S ) = ( limsup ` ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) ) ) |
| 538 | 530 536 537 | 3brtr4d | |- ( ph -> S ~~> ( limsup ` S ) ) |
| 539 | 464 | mptex | |- ( j e. ( ZZ>= ` M ) |-> ( F ` ( A + ( 1 / j ) ) ) ) e. _V |
| 540 | 9 539 | eqeltri | |- S e. _V |
| 541 | 540 | a1i | |- ( ph -> S e. _V ) |
| 542 | eqidd | |- ( ( ph /\ c e. ZZ ) -> ( S ` c ) = ( S ` c ) ) |
|
| 543 | 541 542 | clim | |- ( ph -> ( S ~~> ( limsup ` S ) <-> ( ( limsup ` S ) e. CC /\ A. a e. RR+ E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) ) ) ) |
| 544 | 538 543 | mpbid | |- ( ph -> ( ( limsup ` S ) e. CC /\ A. a e. RR+ E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) ) ) |
| 545 | 544 | simprd | |- ( ph -> A. a e. RR+ E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) ) |
| 546 | 545 | adantr | |- ( ( ph /\ x e. RR+ ) -> A. a e. RR+ E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) ) |
| 547 | simpr | |- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
|
| 548 | 547 | rphalfcld | |- ( ( ph /\ x e. RR+ ) -> ( x / 2 ) e. RR+ ) |
| 549 | breq2 | |- ( a = ( x / 2 ) -> ( ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a <-> ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
|
| 550 | 549 | anbi2d | |- ( a = ( x / 2 ) -> ( ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) <-> ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) ) |
| 551 | 550 | rexralbidv | |- ( a = ( x / 2 ) -> ( E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) <-> E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) ) |
| 552 | 551 | rspccva | |- ( ( A. a e. RR+ E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) /\ ( x / 2 ) e. RR+ ) -> E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 553 | 546 548 552 | syl2anc | |- ( ( ph /\ x e. RR+ ) -> E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 554 | 451 553 | r19.29a | |- ( ( ph /\ x e. RR+ ) -> E. j e. ( ZZ>= ` N ) ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 555 | 405 554 | r19.29a | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. ( A (,) B ) ( ( z =/= A /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 556 | 555 | ralrimiva | |- ( ph -> A. x e. RR+ E. y e. RR+ A. z e. ( A (,) B ) ( ( z =/= A /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 557 | ioosscn | |- ( A (,) B ) C_ CC |
|
| 558 | 557 | a1i | |- ( ph -> ( A (,) B ) C_ CC ) |
| 559 | 454 558 105 | ellimc3 | |- ( ph -> ( ( limsup ` S ) e. ( F limCC A ) <-> ( ( limsup ` S ) e. CC /\ A. x e. RR+ E. y e. RR+ A. z e. ( A (,) B ) ( ( z =/= A /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) ) ) |
| 560 | 140 556 559 | mpbir2and | |- ( ph -> ( limsup ` S ) e. ( F limCC A ) ) |