This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . This means that for any real x , no matter how small, there always exists an integer j such that the absolute difference of any later complex number in the sequence and the limit is less than x . (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim.1 | |- ( ph -> F e. V ) |
|
| clim.3 | |- ( ( ph /\ k e. ZZ ) -> ( F ` k ) = B ) |
||
| Assertion | clim | |- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim.1 | |- ( ph -> F e. V ) |
|
| 2 | clim.3 | |- ( ( ph /\ k e. ZZ ) -> ( F ` k ) = B ) |
|
| 3 | climrel | |- Rel ~~> |
|
| 4 | 3 | brrelex2i | |- ( F ~~> A -> A e. _V ) |
| 5 | 4 | a1i | |- ( ph -> ( F ~~> A -> A e. _V ) ) |
| 6 | elex | |- ( A e. CC -> A e. _V ) |
|
| 7 | 6 | adantr | |- ( ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) -> A e. _V ) |
| 8 | 7 | a1i | |- ( ph -> ( ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) -> A e. _V ) ) |
| 9 | simpr | |- ( ( f = F /\ y = A ) -> y = A ) |
|
| 10 | 9 | eleq1d | |- ( ( f = F /\ y = A ) -> ( y e. CC <-> A e. CC ) ) |
| 11 | fveq1 | |- ( f = F -> ( f ` k ) = ( F ` k ) ) |
|
| 12 | 11 | adantr | |- ( ( f = F /\ y = A ) -> ( f ` k ) = ( F ` k ) ) |
| 13 | 12 | eleq1d | |- ( ( f = F /\ y = A ) -> ( ( f ` k ) e. CC <-> ( F ` k ) e. CC ) ) |
| 14 | oveq12 | |- ( ( ( f ` k ) = ( F ` k ) /\ y = A ) -> ( ( f ` k ) - y ) = ( ( F ` k ) - A ) ) |
|
| 15 | 11 14 | sylan | |- ( ( f = F /\ y = A ) -> ( ( f ` k ) - y ) = ( ( F ` k ) - A ) ) |
| 16 | 15 | fveq2d | |- ( ( f = F /\ y = A ) -> ( abs ` ( ( f ` k ) - y ) ) = ( abs ` ( ( F ` k ) - A ) ) ) |
| 17 | 16 | breq1d | |- ( ( f = F /\ y = A ) -> ( ( abs ` ( ( f ` k ) - y ) ) < x <-> ( abs ` ( ( F ` k ) - A ) ) < x ) ) |
| 18 | 13 17 | anbi12d | |- ( ( f = F /\ y = A ) -> ( ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
| 19 | 18 | ralbidv | |- ( ( f = F /\ y = A ) -> ( A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
| 20 | 19 | rexbidv | |- ( ( f = F /\ y = A ) -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
| 21 | 20 | ralbidv | |- ( ( f = F /\ y = A ) -> ( A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) <-> A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
| 22 | 10 21 | anbi12d | |- ( ( f = F /\ y = A ) -> ( ( y e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) ) <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) ) |
| 23 | df-clim | |- ~~> = { <. f , y >. | ( y e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) ) } |
|
| 24 | 22 23 | brabga | |- ( ( F e. V /\ A e. _V ) -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) ) |
| 25 | 24 | ex | |- ( F e. V -> ( A e. _V -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) ) ) |
| 26 | 1 25 | syl | |- ( ph -> ( A e. _V -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) ) ) |
| 27 | 5 8 26 | pm5.21ndd | |- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) ) |
| 28 | eluzelz | |- ( k e. ( ZZ>= ` j ) -> k e. ZZ ) |
|
| 29 | 2 | eleq1d | |- ( ( ph /\ k e. ZZ ) -> ( ( F ` k ) e. CC <-> B e. CC ) ) |
| 30 | 2 | fvoveq1d | |- ( ( ph /\ k e. ZZ ) -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( B - A ) ) ) |
| 31 | 30 | breq1d | |- ( ( ph /\ k e. ZZ ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x <-> ( abs ` ( B - A ) ) < x ) ) |
| 32 | 29 31 | anbi12d | |- ( ( ph /\ k e. ZZ ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 33 | 28 32 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 34 | 33 | ralbidva | |- ( ph -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 35 | 34 | rexbidv | |- ( ph -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 36 | 35 | ralbidv | |- ( ph -> ( A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 37 | 36 | anbi2d | |- ( ph -> ( ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) ) |
| 38 | 27 37 | bitrd | |- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) ) |