This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbii . (Contributed by NM, 25-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabbi | |- ( A. x e. A ( ps <-> ch ) <-> { x e. A | ps } = { x e. A | ch } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbib | |- ( { x | ( x e. A /\ ps ) } = { x | ( x e. A /\ ch ) } <-> A. x ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) ) |
|
| 2 | df-rab | |- { x e. A | ps } = { x | ( x e. A /\ ps ) } |
|
| 3 | df-rab | |- { x e. A | ch } = { x | ( x e. A /\ ch ) } |
|
| 4 | 2 3 | eqeq12i | |- ( { x e. A | ps } = { x e. A | ch } <-> { x | ( x e. A /\ ps ) } = { x | ( x e. A /\ ch ) } ) |
| 5 | df-ral | |- ( A. x e. A ( ps <-> ch ) <-> A. x ( x e. A -> ( ps <-> ch ) ) ) |
|
| 6 | pm5.32 | |- ( ( x e. A -> ( ps <-> ch ) ) <-> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) ) |
|
| 7 | 6 | albii | |- ( A. x ( x e. A -> ( ps <-> ch ) ) <-> A. x ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) ) |
| 8 | 5 7 | bitri | |- ( A. x e. A ( ps <-> ch ) <-> A. x ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) ) |
| 9 | 1 4 8 | 3bitr4ri | |- ( A. x e. A ( ps <-> ch ) <-> { x e. A | ps } = { x e. A | ch } ) |