This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F has bounded derivative on ( A (,) B ) then a sequence of points in its image converges to its limsup . (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 3-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ioodvbdlimc1lem1.a | |- ( ph -> A e. RR ) |
|
| ioodvbdlimc1lem1.b | |- ( ph -> B e. RR ) |
||
| ioodvbdlimc1lem1.altb | |- ( ph -> A < B ) |
||
| ioodvbdlimc1lem1.f | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
||
| ioodvbdlimc1lem1.dmdv | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| ioodvbdlimc1lem1.dvbd | |- ( ph -> E. y e. RR A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ y ) |
||
| ioodvbdlimc1lem1.m | |- ( ph -> M e. ZZ ) |
||
| ioodvbdlimc1lem1.r | |- ( ph -> R : ( ZZ>= ` M ) --> ( A (,) B ) ) |
||
| ioodvbdlimc1lem1.s | |- S = ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) |
||
| ioodvbdlimc1lem1.rcnv | |- ( ph -> R e. dom ~~> ) |
||
| ioodvbdlimc1lem1.k | |- K = inf ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) |
||
| Assertion | ioodvbdlimc1lem1 | |- ( ph -> S ~~> ( limsup ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioodvbdlimc1lem1.a | |- ( ph -> A e. RR ) |
|
| 2 | ioodvbdlimc1lem1.b | |- ( ph -> B e. RR ) |
|
| 3 | ioodvbdlimc1lem1.altb | |- ( ph -> A < B ) |
|
| 4 | ioodvbdlimc1lem1.f | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
|
| 5 | ioodvbdlimc1lem1.dmdv | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 6 | ioodvbdlimc1lem1.dvbd | |- ( ph -> E. y e. RR A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ y ) |
|
| 7 | ioodvbdlimc1lem1.m | |- ( ph -> M e. ZZ ) |
|
| 8 | ioodvbdlimc1lem1.r | |- ( ph -> R : ( ZZ>= ` M ) --> ( A (,) B ) ) |
|
| 9 | ioodvbdlimc1lem1.s | |- S = ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) |
|
| 10 | ioodvbdlimc1lem1.rcnv | |- ( ph -> R e. dom ~~> ) |
|
| 11 | ioodvbdlimc1lem1.k | |- K = inf ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) |
|
| 12 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 13 | cncff | |- ( F e. ( ( A (,) B ) -cn-> RR ) -> F : ( A (,) B ) --> RR ) |
|
| 14 | 4 13 | syl | |- ( ph -> F : ( A (,) B ) --> RR ) |
| 15 | 14 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> F : ( A (,) B ) --> RR ) |
| 16 | 8 | ffvelcdmda | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( R ` j ) e. ( A (,) B ) ) |
| 17 | 15 16 | ffvelcdmd | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( F ` ( R ` j ) ) e. RR ) |
| 18 | 17 9 | fmptd | |- ( ph -> S : ( ZZ>= ` M ) --> RR ) |
| 19 | ssrab2 | |- { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } C_ ( ZZ>= ` M ) |
|
| 20 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 21 | 20 | adantl | |- ( ( ph /\ x e. RR+ ) -> x e. RR ) |
| 22 | 2fveq3 | |- ( z = x -> ( abs ` ( ( RR _D F ) ` z ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
|
| 23 | 22 | cbvmptv | |- ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) = ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 24 | 23 | rneqi | |- ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) = ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 25 | 24 | supeq1i | |- sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) |
| 26 | ioomidp | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
|
| 27 | 1 2 3 26 | syl3anc | |- ( ph -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
| 28 | 27 | ne0d | |- ( ph -> ( A (,) B ) =/= (/) ) |
| 29 | ioossre | |- ( A (,) B ) C_ RR |
|
| 30 | 29 | a1i | |- ( ph -> ( A (,) B ) C_ RR ) |
| 31 | dvfre | |- ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 32 | 14 30 31 | syl2anc | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 33 | 5 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
| 34 | 32 33 | mpbid | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 35 | ax-resscn | |- RR C_ CC |
|
| 36 | 35 | a1i | |- ( ph -> RR C_ CC ) |
| 37 | 34 36 | fssd | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 38 | 37 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 39 | 38 | abscld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) e. RR ) |
| 40 | eqid | |- ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) = ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) |
|
| 41 | eqid | |- sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) |
|
| 42 | 28 39 6 40 41 | suprnmpt | |- ( ph -> ( sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) e. RR /\ A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) ) |
| 43 | 42 | simpld | |- ( ph -> sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) e. RR ) |
| 44 | 25 43 | eqeltrid | |- ( ph -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR ) |
| 45 | 44 | adantr | |- ( ( ph /\ x e. RR+ ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR ) |
| 46 | peano2re | |- ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
|
| 47 | 45 46 | syl | |- ( ( ph /\ x e. RR+ ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 48 | 0red | |- ( ph -> 0 e. RR ) |
|
| 49 | 1red | |- ( ph -> 1 e. RR ) |
|
| 50 | 48 49 | readdcld | |- ( ph -> ( 0 + 1 ) e. RR ) |
| 51 | 44 46 | syl | |- ( ph -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 52 | 48 | ltp1d | |- ( ph -> 0 < ( 0 + 1 ) ) |
| 53 | 37 27 | ffvelcdmd | |- ( ph -> ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) e. CC ) |
| 54 | 53 | abscld | |- ( ph -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) e. RR ) |
| 55 | 53 | absge0d | |- ( ph -> 0 <_ ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) ) |
| 56 | 42 | simprd | |- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 57 | 2fveq3 | |- ( y = x -> ( abs ` ( ( RR _D F ) ` y ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
|
| 58 | 25 | a1i | |- ( y = x -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 59 | 57 58 | breq12d | |- ( y = x -> ( ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) <-> ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) ) |
| 60 | 59 | cbvralvw | |- ( A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) <-> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 61 | 56 60 | sylibr | |- ( ph -> A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 62 | 2fveq3 | |- ( y = ( ( A + B ) / 2 ) -> ( abs ` ( ( RR _D F ) ` y ) ) = ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) ) |
|
| 63 | 62 | breq1d | |- ( y = ( ( A + B ) / 2 ) -> ( ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) <-> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) ) |
| 64 | 63 | rspcva | |- ( ( ( ( A + B ) / 2 ) e. ( A (,) B ) /\ A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 65 | 27 61 64 | syl2anc | |- ( ph -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 66 | 48 54 44 55 65 | letrd | |- ( ph -> 0 <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 67 | 48 44 49 66 | leadd1dd | |- ( ph -> ( 0 + 1 ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) |
| 68 | 48 50 51 52 67 | ltletrd | |- ( ph -> 0 < ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) |
| 69 | 68 | gt0ne0d | |- ( ph -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) =/= 0 ) |
| 70 | 69 | adantr | |- ( ( ph /\ x e. RR+ ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) =/= 0 ) |
| 71 | 21 47 70 | redivcld | |- ( ( ph /\ x e. RR+ ) -> ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) e. RR ) |
| 72 | rpgt0 | |- ( x e. RR+ -> 0 < x ) |
|
| 73 | 72 | adantl | |- ( ( ph /\ x e. RR+ ) -> 0 < x ) |
| 74 | 68 | adantr | |- ( ( ph /\ x e. RR+ ) -> 0 < ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) |
| 75 | 21 47 73 74 | divgt0d | |- ( ( ph /\ x e. RR+ ) -> 0 < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 76 | 71 75 | elrpd | |- ( ( ph /\ x e. RR+ ) -> ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) e. RR+ ) |
| 77 | 7 | adantr | |- ( ( ph /\ x e. RR+ ) -> M e. ZZ ) |
| 78 | 10 | adantr | |- ( ( ph /\ x e. RR+ ) -> R e. dom ~~> ) |
| 79 | 12 | climcau | |- ( ( M e. ZZ /\ R e. dom ~~> ) -> A. w e. RR+ E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < w ) |
| 80 | 77 78 79 | syl2anc | |- ( ( ph /\ x e. RR+ ) -> A. w e. RR+ E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < w ) |
| 81 | breq2 | |- ( w = ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) -> ( ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < w <-> ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
|
| 82 | 81 | rexralbidv | |- ( w = ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) -> ( E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < w <-> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 83 | 82 | rspcva | |- ( ( ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) e. RR+ /\ A. w e. RR+ E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < w ) -> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 84 | 76 80 83 | syl2anc | |- ( ( ph /\ x e. RR+ ) -> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 85 | rabn0 | |- ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } =/= (/) <-> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
|
| 86 | 84 85 | sylibr | |- ( ( ph /\ x e. RR+ ) -> { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } =/= (/) ) |
| 87 | infssuzcl | |- ( ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } C_ ( ZZ>= ` M ) /\ { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } =/= (/) ) -> inf ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) e. { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } ) |
|
| 88 | 19 86 87 | sylancr | |- ( ( ph /\ x e. RR+ ) -> inf ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) e. { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } ) |
| 89 | 11 88 | eqeltrid | |- ( ( ph /\ x e. RR+ ) -> K e. { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } ) |
| 90 | 19 89 | sselid | |- ( ( ph /\ x e. RR+ ) -> K e. ( ZZ>= ` M ) ) |
| 91 | 2fveq3 | |- ( j = i -> ( F ` ( R ` j ) ) = ( F ` ( R ` i ) ) ) |
|
| 92 | uzss | |- ( K e. ( ZZ>= ` M ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) |
|
| 93 | 90 92 | syl | |- ( ( ph /\ x e. RR+ ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) |
| 94 | 93 | sselda | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> i e. ( ZZ>= ` M ) ) |
| 95 | 14 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> F : ( A (,) B ) --> RR ) |
| 96 | 8 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> R : ( ZZ>= ` M ) --> ( A (,) B ) ) |
| 97 | 96 94 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` i ) e. ( A (,) B ) ) |
| 98 | 95 97 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( F ` ( R ` i ) ) e. RR ) |
| 99 | 9 91 94 98 | fvmptd3 | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( S ` i ) = ( F ` ( R ` i ) ) ) |
| 100 | 2fveq3 | |- ( j = K -> ( F ` ( R ` j ) ) = ( F ` ( R ` K ) ) ) |
|
| 101 | 90 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> K e. ( ZZ>= ` M ) ) |
| 102 | 96 101 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` K ) e. ( A (,) B ) ) |
| 103 | 95 102 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( F ` ( R ` K ) ) e. RR ) |
| 104 | 9 100 101 103 | fvmptd3 | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( S ` K ) = ( F ` ( R ` K ) ) ) |
| 105 | 99 104 | oveq12d | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( ( S ` i ) - ( S ` K ) ) = ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) |
| 106 | 105 | fveq2d | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( S ` i ) - ( S ` K ) ) ) = ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) ) |
| 107 | 98 | recnd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( F ` ( R ` i ) ) e. CC ) |
| 108 | 103 | recnd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( F ` ( R ` K ) ) e. CC ) |
| 109 | 107 108 | subcld | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) e. CC ) |
| 110 | 109 | abscld | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) e. RR ) |
| 111 | 110 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) e. RR ) |
| 112 | 44 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR ) |
| 113 | 112 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR ) |
| 114 | 8 | adantr | |- ( ( ph /\ x e. RR+ ) -> R : ( ZZ>= ` M ) --> ( A (,) B ) ) |
| 115 | 114 90 | ffvelcdmd | |- ( ( ph /\ x e. RR+ ) -> ( R ` K ) e. ( A (,) B ) ) |
| 116 | 29 115 | sselid | |- ( ( ph /\ x e. RR+ ) -> ( R ` K ) e. RR ) |
| 117 | 116 | ad2antrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` K ) e. RR ) |
| 118 | 29 97 | sselid | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` i ) e. RR ) |
| 119 | 118 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` i ) e. RR ) |
| 120 | 117 119 | resubcld | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` K ) - ( R ` i ) ) e. RR ) |
| 121 | 113 120 | remulcld | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) e. RR ) |
| 122 | 20 | ad3antlr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> x e. RR ) |
| 123 | 107 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( F ` ( R ` i ) ) e. CC ) |
| 124 | 108 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( F ` ( R ` K ) ) e. CC ) |
| 125 | 123 124 | abssubd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) = ( abs ` ( ( F ` ( R ` K ) ) - ( F ` ( R ` i ) ) ) ) ) |
| 126 | 1 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> A e. RR ) |
| 127 | 2 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> B e. RR ) |
| 128 | 95 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> F : ( A (,) B ) --> RR ) |
| 129 | 5 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
| 130 | 61 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 131 | 97 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` i ) e. ( A (,) B ) ) |
| 132 | 118 | rexrd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` i ) e. RR* ) |
| 133 | 132 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` i ) e. RR* ) |
| 134 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 135 | 134 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> B e. RR* ) |
| 136 | 135 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> B e. RR* ) |
| 137 | simpr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` i ) < ( R ` K ) ) |
|
| 138 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 139 | 138 | adantr | |- ( ( ph /\ x e. RR+ ) -> A e. RR* ) |
| 140 | 134 | adantr | |- ( ( ph /\ x e. RR+ ) -> B e. RR* ) |
| 141 | iooltub | |- ( ( A e. RR* /\ B e. RR* /\ ( R ` K ) e. ( A (,) B ) ) -> ( R ` K ) < B ) |
|
| 142 | 139 140 115 141 | syl3anc | |- ( ( ph /\ x e. RR+ ) -> ( R ` K ) < B ) |
| 143 | 142 | ad2antrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` K ) < B ) |
| 144 | 133 136 117 137 143 | eliood | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` K ) e. ( ( R ` i ) (,) B ) ) |
| 145 | 126 127 128 129 113 130 131 144 | dvbdfbdioolem1 | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( abs ` ( ( F ` ( R ` K ) ) - ( F ` ( R ` i ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) /\ ( abs ` ( ( F ` ( R ` K ) ) - ( F ` ( R ` i ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( B - A ) ) ) ) |
| 146 | 145 | simpld | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` K ) ) - ( F ` ( R ` i ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) ) |
| 147 | 125 146 | eqbrtrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) ) |
| 148 | 113 46 | syl | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 149 | 148 120 | remulcld | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` K ) - ( R ` i ) ) ) e. RR ) |
| 150 | 119 117 | posdifd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` i ) < ( R ` K ) <-> 0 < ( ( R ` K ) - ( R ` i ) ) ) ) |
| 151 | 137 150 | mpbid | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> 0 < ( ( R ` K ) - ( R ` i ) ) ) |
| 152 | 120 151 | elrpd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` K ) - ( R ` i ) ) e. RR+ ) |
| 153 | 113 | ltp1d | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) < ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) |
| 154 | 113 148 152 153 | ltmul1dd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) < ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` K ) - ( R ` i ) ) ) ) |
| 155 | 29 102 | sselid | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` K ) e. RR ) |
| 156 | 118 155 | resubcld | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( ( R ` i ) - ( R ` K ) ) e. RR ) |
| 157 | 156 | recnd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( ( R ` i ) - ( R ` K ) ) e. CC ) |
| 158 | 157 | abscld | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 159 | 158 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 160 | 71 | ad2antrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) e. RR ) |
| 161 | 120 | leabsd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` K ) - ( R ` i ) ) <_ ( abs ` ( ( R ` K ) - ( R ` i ) ) ) ) |
| 162 | 117 | recnd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` K ) e. CC ) |
| 163 | 118 | recnd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` i ) e. CC ) |
| 164 | 163 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` i ) e. CC ) |
| 165 | 162 164 | abssubd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( R ` K ) - ( R ` i ) ) ) = ( abs ` ( ( R ` i ) - ( R ` K ) ) ) ) |
| 166 | 161 165 | breqtrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` K ) - ( R ` i ) ) <_ ( abs ` ( ( R ` i ) - ( R ` K ) ) ) ) |
| 167 | fveq2 | |- ( k = K -> ( ZZ>= ` k ) = ( ZZ>= ` K ) ) |
|
| 168 | fveq2 | |- ( k = K -> ( R ` k ) = ( R ` K ) ) |
|
| 169 | 168 | oveq2d | |- ( k = K -> ( ( R ` i ) - ( R ` k ) ) = ( ( R ` i ) - ( R ` K ) ) ) |
| 170 | 169 | fveq2d | |- ( k = K -> ( abs ` ( ( R ` i ) - ( R ` k ) ) ) = ( abs ` ( ( R ` i ) - ( R ` K ) ) ) ) |
| 171 | 170 | breq1d | |- ( k = K -> ( ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 172 | 167 171 | raleqbidv | |- ( k = K -> ( A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> A. i e. ( ZZ>= ` K ) ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 173 | 172 | elrab | |- ( K e. { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } <-> ( K e. ( ZZ>= ` M ) /\ A. i e. ( ZZ>= ` K ) ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 174 | 89 173 | sylib | |- ( ( ph /\ x e. RR+ ) -> ( K e. ( ZZ>= ` M ) /\ A. i e. ( ZZ>= ` K ) ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 175 | 174 | simprd | |- ( ( ph /\ x e. RR+ ) -> A. i e. ( ZZ>= ` K ) ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 176 | 175 | r19.21bi | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 177 | 176 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 178 | 120 159 160 166 177 | lelttrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` K ) - ( R ` i ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 179 | 51 68 | elrpd | |- ( ph -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR+ ) |
| 180 | 179 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR+ ) |
| 181 | 120 122 180 | ltmuldiv2d | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` K ) - ( R ` i ) ) ) < x <-> ( ( R ` K ) - ( R ` i ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 182 | 178 181 | mpbird | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` K ) - ( R ` i ) ) ) < x ) |
| 183 | 121 149 122 154 182 | lttrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) < x ) |
| 184 | 111 121 122 147 183 | lelttrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 185 | fveq2 | |- ( ( R ` i ) = ( R ` K ) -> ( F ` ( R ` i ) ) = ( F ` ( R ` K ) ) ) |
|
| 186 | 185 | oveq1d | |- ( ( R ` i ) = ( R ` K ) -> ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) = ( ( F ` ( R ` K ) ) - ( F ` ( R ` K ) ) ) ) |
| 187 | 108 | subidd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( ( F ` ( R ` K ) ) - ( F ` ( R ` K ) ) ) = 0 ) |
| 188 | 186 187 | sylan9eqr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) = ( R ` K ) ) -> ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) = 0 ) |
| 189 | 188 | abs00bd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) = ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) = 0 ) |
| 190 | 72 | ad3antlr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) = ( R ` K ) ) -> 0 < x ) |
| 191 | 189 190 | eqbrtrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) = ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 192 | 191 | adantlr | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ ( R ` i ) = ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 193 | simpll | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) ) |
|
| 194 | 155 | ad2antrr | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( R ` K ) e. RR ) |
| 195 | 118 | ad2antrr | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( R ` i ) e. RR ) |
| 196 | id | |- ( ( R ` K ) = ( R ` i ) -> ( R ` K ) = ( R ` i ) ) |
|
| 197 | 196 | eqcomd | |- ( ( R ` K ) = ( R ` i ) -> ( R ` i ) = ( R ` K ) ) |
| 198 | 197 | necon3bi | |- ( -. ( R ` i ) = ( R ` K ) -> ( R ` K ) =/= ( R ` i ) ) |
| 199 | 198 | adantl | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( R ` K ) =/= ( R ` i ) ) |
| 200 | simplr | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> -. ( R ` i ) < ( R ` K ) ) |
|
| 201 | 194 195 199 200 | lttri5d | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( R ` K ) < ( R ` i ) ) |
| 202 | 110 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) e. RR ) |
| 203 | 112 156 | remulcld | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 204 | 203 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 205 | 20 | ad3antlr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> x e. RR ) |
| 206 | 1 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> A e. RR ) |
| 207 | 2 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> B e. RR ) |
| 208 | 95 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> F : ( A (,) B ) --> RR ) |
| 209 | 5 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
| 210 | 44 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR ) |
| 211 | 61 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 212 | 102 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` K ) e. ( A (,) B ) ) |
| 213 | 116 | rexrd | |- ( ( ph /\ x e. RR+ ) -> ( R ` K ) e. RR* ) |
| 214 | 213 | ad2antrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` K ) e. RR* ) |
| 215 | 207 | rexrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> B e. RR* ) |
| 216 | 118 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` i ) e. RR ) |
| 217 | simpr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` K ) < ( R ` i ) ) |
|
| 218 | 138 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> A e. RR* ) |
| 219 | iooltub | |- ( ( A e. RR* /\ B e. RR* /\ ( R ` i ) e. ( A (,) B ) ) -> ( R ` i ) < B ) |
|
| 220 | 218 135 97 219 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` i ) < B ) |
| 221 | 220 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` i ) < B ) |
| 222 | 214 215 216 217 221 | eliood | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` i ) e. ( ( R ` K ) (,) B ) ) |
| 223 | 206 207 208 209 210 211 212 222 | dvbdfbdioolem1 | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) /\ ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( B - A ) ) ) ) |
| 224 | 223 | simpld | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) ) |
| 225 | 1red | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> 1 e. RR ) |
|
| 226 | 210 225 | readdcld | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 227 | 155 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` K ) e. RR ) |
| 228 | 216 227 | resubcld | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( R ` i ) - ( R ` K ) ) e. RR ) |
| 229 | 226 228 | remulcld | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 230 | 210 46 | syl | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 231 | 227 216 | posdifd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( R ` K ) < ( R ` i ) <-> 0 < ( ( R ` i ) - ( R ` K ) ) ) ) |
| 232 | 217 231 | mpbid | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> 0 < ( ( R ` i ) - ( R ` K ) ) ) |
| 233 | 228 232 | elrpd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( R ` i ) - ( R ` K ) ) e. RR+ ) |
| 234 | 210 | ltp1d | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) < ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) |
| 235 | 210 230 233 234 | ltmul1dd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) < ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` i ) - ( R ` K ) ) ) ) |
| 236 | 158 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 237 | 71 | ad2antrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) e. RR ) |
| 238 | 228 | leabsd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( R ` i ) - ( R ` K ) ) <_ ( abs ` ( ( R ` i ) - ( R ` K ) ) ) ) |
| 239 | 176 | adantr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 240 | 228 236 237 238 239 | lelttrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( R ` i ) - ( R ` K ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 241 | 179 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR+ ) |
| 242 | 228 205 241 | ltmuldiv2d | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` i ) - ( R ` K ) ) ) < x <-> ( ( R ` i ) - ( R ` K ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 243 | 240 242 | mpbird | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` i ) - ( R ` K ) ) ) < x ) |
| 244 | 204 229 205 235 243 | lttrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) < x ) |
| 245 | 202 204 205 224 244 | lelttrd | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 246 | 193 201 245 | syl2anc | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 247 | 192 246 | pm2.61dan | |- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 248 | 184 247 | pm2.61dan | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 249 | 106 248 | eqbrtrd | |- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( S ` i ) - ( S ` K ) ) ) < x ) |
| 250 | 249 | ralrimiva | |- ( ( ph /\ x e. RR+ ) -> A. i e. ( ZZ>= ` K ) ( abs ` ( ( S ` i ) - ( S ` K ) ) ) < x ) |
| 251 | fveq2 | |- ( k = K -> ( S ` k ) = ( S ` K ) ) |
|
| 252 | 251 | oveq2d | |- ( k = K -> ( ( S ` i ) - ( S ` k ) ) = ( ( S ` i ) - ( S ` K ) ) ) |
| 253 | 252 | fveq2d | |- ( k = K -> ( abs ` ( ( S ` i ) - ( S ` k ) ) ) = ( abs ` ( ( S ` i ) - ( S ` K ) ) ) ) |
| 254 | 253 | breq1d | |- ( k = K -> ( ( abs ` ( ( S ` i ) - ( S ` k ) ) ) < x <-> ( abs ` ( ( S ` i ) - ( S ` K ) ) ) < x ) ) |
| 255 | 167 254 | raleqbidv | |- ( k = K -> ( A. i e. ( ZZ>= ` k ) ( abs ` ( ( S ` i ) - ( S ` k ) ) ) < x <-> A. i e. ( ZZ>= ` K ) ( abs ` ( ( S ` i ) - ( S ` K ) ) ) < x ) ) |
| 256 | 255 | rspcev | |- ( ( K e. ( ZZ>= ` M ) /\ A. i e. ( ZZ>= ` K ) ( abs ` ( ( S ` i ) - ( S ` K ) ) ) < x ) -> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( S ` i ) - ( S ` k ) ) ) < x ) |
| 257 | 90 250 256 | syl2anc | |- ( ( ph /\ x e. RR+ ) -> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( S ` i ) - ( S ` k ) ) ) < x ) |
| 258 | 257 | ralrimiva | |- ( ph -> A. x e. RR+ E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( S ` i ) - ( S ` k ) ) ) < x ) |
| 259 | 12 18 258 | caurcvg | |- ( ph -> S ~~> ( limsup ` S ) ) |