This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climconst.1 | |- Z = ( ZZ>= ` M ) |
|
| climconst.2 | |- ( ph -> M e. ZZ ) |
||
| climconst.3 | |- ( ph -> F e. V ) |
||
| climconst.4 | |- ( ph -> A e. CC ) |
||
| climconst.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| Assertion | climconst | |- ( ph -> F ~~> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climconst.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climconst.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climconst.3 | |- ( ph -> F e. V ) |
|
| 4 | climconst.4 | |- ( ph -> A e. CC ) |
|
| 5 | climconst.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 6 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 7 | 2 6 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 8 | 7 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 9 | 4 | subidd | |- ( ph -> ( A - A ) = 0 ) |
| 10 | 9 | fveq2d | |- ( ph -> ( abs ` ( A - A ) ) = ( abs ` 0 ) ) |
| 11 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 12 | 10 11 | eqtrdi | |- ( ph -> ( abs ` ( A - A ) ) = 0 ) |
| 13 | 12 | adantr | |- ( ( ph /\ x e. RR+ ) -> ( abs ` ( A - A ) ) = 0 ) |
| 14 | rpgt0 | |- ( x e. RR+ -> 0 < x ) |
|
| 15 | 14 | adantl | |- ( ( ph /\ x e. RR+ ) -> 0 < x ) |
| 16 | 13 15 | eqbrtrd | |- ( ( ph /\ x e. RR+ ) -> ( abs ` ( A - A ) ) < x ) |
| 17 | 16 | ralrimivw | |- ( ( ph /\ x e. RR+ ) -> A. k e. Z ( abs ` ( A - A ) ) < x ) |
| 18 | fveq2 | |- ( j = M -> ( ZZ>= ` j ) = ( ZZ>= ` M ) ) |
|
| 19 | 18 1 | eqtr4di | |- ( j = M -> ( ZZ>= ` j ) = Z ) |
| 20 | 19 | raleqdv | |- ( j = M -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( A - A ) ) < x <-> A. k e. Z ( abs ` ( A - A ) ) < x ) ) |
| 21 | 20 | rspcev | |- ( ( M e. Z /\ A. k e. Z ( abs ` ( A - A ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( A - A ) ) < x ) |
| 22 | 8 17 21 | syl2an2r | |- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( A - A ) ) < x ) |
| 23 | 22 | ralrimiva | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( A - A ) ) < x ) |
| 24 | 4 | adantr | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 25 | 1 2 3 5 4 24 | clim2c | |- ( ph -> ( F ~~> A <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( A - A ) ) < x ) ) |
| 26 | 23 25 | mpbird | |- ( ph -> F ~~> A ) |