This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvbdfbdioolem1.a | |- ( ph -> A e. RR ) |
|
| dvbdfbdioolem1.b | |- ( ph -> B e. RR ) |
||
| dvbdfbdioolem1.f | |- ( ph -> F : ( A (,) B ) --> RR ) |
||
| dvbdfbdioolem1.dmdv | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| dvbdfbdioolem1.k | |- ( ph -> K e. RR ) |
||
| dvbdfbdioolem1.dvbd | |- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
||
| dvbdfbdioolem1.c | |- ( ph -> C e. ( A (,) B ) ) |
||
| dvbdfbdioolem1.d | |- ( ph -> D e. ( C (,) B ) ) |
||
| Assertion | dvbdfbdioolem1 | |- ( ph -> ( ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) /\ ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvbdfbdioolem1.a | |- ( ph -> A e. RR ) |
|
| 2 | dvbdfbdioolem1.b | |- ( ph -> B e. RR ) |
|
| 3 | dvbdfbdioolem1.f | |- ( ph -> F : ( A (,) B ) --> RR ) |
|
| 4 | dvbdfbdioolem1.dmdv | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 5 | dvbdfbdioolem1.k | |- ( ph -> K e. RR ) |
|
| 6 | dvbdfbdioolem1.dvbd | |- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
|
| 7 | dvbdfbdioolem1.c | |- ( ph -> C e. ( A (,) B ) ) |
|
| 8 | dvbdfbdioolem1.d | |- ( ph -> D e. ( C (,) B ) ) |
|
| 9 | ioossre | |- ( A (,) B ) C_ RR |
|
| 10 | 9 7 | sselid | |- ( ph -> C e. RR ) |
| 11 | ioossre | |- ( C (,) B ) C_ RR |
|
| 12 | 11 8 | sselid | |- ( ph -> D e. RR ) |
| 13 | 10 | rexrd | |- ( ph -> C e. RR* ) |
| 14 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 15 | ioogtlb | |- ( ( C e. RR* /\ B e. RR* /\ D e. ( C (,) B ) ) -> C < D ) |
|
| 16 | 13 14 8 15 | syl3anc | |- ( ph -> C < D ) |
| 17 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 18 | ioogtlb | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,) B ) ) -> A < C ) |
|
| 19 | 17 14 7 18 | syl3anc | |- ( ph -> A < C ) |
| 20 | iooltub | |- ( ( C e. RR* /\ B e. RR* /\ D e. ( C (,) B ) ) -> D < B ) |
|
| 21 | 13 14 8 20 | syl3anc | |- ( ph -> D < B ) |
| 22 | iccssioo | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < C /\ D < B ) ) -> ( C [,] D ) C_ ( A (,) B ) ) |
|
| 23 | 17 14 19 21 22 | syl22anc | |- ( ph -> ( C [,] D ) C_ ( A (,) B ) ) |
| 24 | ax-resscn | |- RR C_ CC |
|
| 25 | 24 | a1i | |- ( ph -> RR C_ CC ) |
| 26 | 3 25 | fssd | |- ( ph -> F : ( A (,) B ) --> CC ) |
| 27 | 9 | a1i | |- ( ph -> ( A (,) B ) C_ RR ) |
| 28 | dvcn | |- ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC /\ ( A (,) B ) C_ RR ) /\ dom ( RR _D F ) = ( A (,) B ) ) -> F e. ( ( A (,) B ) -cn-> CC ) ) |
|
| 29 | 25 26 27 4 28 | syl31anc | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 30 | cncfcdm | |- ( ( RR C_ CC /\ F e. ( ( A (,) B ) -cn-> CC ) ) -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
|
| 31 | 25 29 30 | syl2anc | |- ( ph -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
| 32 | 3 31 | mpbird | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
| 33 | rescncf | |- ( ( C [,] D ) C_ ( A (,) B ) -> ( F e. ( ( A (,) B ) -cn-> RR ) -> ( F |` ( C [,] D ) ) e. ( ( C [,] D ) -cn-> RR ) ) ) |
|
| 34 | 23 32 33 | sylc | |- ( ph -> ( F |` ( C [,] D ) ) e. ( ( C [,] D ) -cn-> RR ) ) |
| 35 | 23 27 | sstrd | |- ( ph -> ( C [,] D ) C_ RR ) |
| 36 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 37 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 38 | 36 37 | dvres | |- ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( C [,] D ) C_ RR ) ) -> ( RR _D ( F |` ( C [,] D ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) ) |
| 39 | 25 26 27 35 38 | syl22anc | |- ( ph -> ( RR _D ( F |` ( C [,] D ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) ) |
| 40 | iccntr | |- ( ( C e. RR /\ D e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) = ( C (,) D ) ) |
|
| 41 | 10 12 40 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) = ( C (,) D ) ) |
| 42 | 41 | reseq2d | |- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) = ( ( RR _D F ) |` ( C (,) D ) ) ) |
| 43 | 39 42 | eqtrd | |- ( ph -> ( RR _D ( F |` ( C [,] D ) ) ) = ( ( RR _D F ) |` ( C (,) D ) ) ) |
| 44 | 43 | dmeqd | |- ( ph -> dom ( RR _D ( F |` ( C [,] D ) ) ) = dom ( ( RR _D F ) |` ( C (,) D ) ) ) |
| 45 | 1 10 19 | ltled | |- ( ph -> A <_ C ) |
| 46 | 12 2 21 | ltled | |- ( ph -> D <_ B ) |
| 47 | ioossioo | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D <_ B ) ) -> ( C (,) D ) C_ ( A (,) B ) ) |
|
| 48 | 17 14 45 46 47 | syl22anc | |- ( ph -> ( C (,) D ) C_ ( A (,) B ) ) |
| 49 | 48 4 | sseqtrrd | |- ( ph -> ( C (,) D ) C_ dom ( RR _D F ) ) |
| 50 | ssdmres | |- ( ( C (,) D ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( C (,) D ) ) = ( C (,) D ) ) |
|
| 51 | 49 50 | sylib | |- ( ph -> dom ( ( RR _D F ) |` ( C (,) D ) ) = ( C (,) D ) ) |
| 52 | 44 51 | eqtrd | |- ( ph -> dom ( RR _D ( F |` ( C [,] D ) ) ) = ( C (,) D ) ) |
| 53 | 10 12 16 34 52 | mvth | |- ( ph -> E. x e. ( C (,) D ) ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) |
| 54 | 43 | fveq1d | |- ( ph -> ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( RR _D F ) |` ( C (,) D ) ) ` x ) ) |
| 55 | fvres | |- ( x e. ( C (,) D ) -> ( ( ( RR _D F ) |` ( C (,) D ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
|
| 56 | 54 55 | sylan9eq | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
| 57 | 56 | eqcomd | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( RR _D F ) ` x ) = ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) ) |
| 58 | 57 | 3adant3 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( ( RR _D F ) ` x ) = ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) ) |
| 59 | simp3 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) |
|
| 60 | 12 | rexrd | |- ( ph -> D e. RR* ) |
| 61 | 10 12 16 | ltled | |- ( ph -> C <_ D ) |
| 62 | ubicc2 | |- ( ( C e. RR* /\ D e. RR* /\ C <_ D ) -> D e. ( C [,] D ) ) |
|
| 63 | 13 60 61 62 | syl3anc | |- ( ph -> D e. ( C [,] D ) ) |
| 64 | fvres | |- ( D e. ( C [,] D ) -> ( ( F |` ( C [,] D ) ) ` D ) = ( F ` D ) ) |
|
| 65 | 63 64 | syl | |- ( ph -> ( ( F |` ( C [,] D ) ) ` D ) = ( F ` D ) ) |
| 66 | lbicc2 | |- ( ( C e. RR* /\ D e. RR* /\ C <_ D ) -> C e. ( C [,] D ) ) |
|
| 67 | 13 60 61 66 | syl3anc | |- ( ph -> C e. ( C [,] D ) ) |
| 68 | fvres | |- ( C e. ( C [,] D ) -> ( ( F |` ( C [,] D ) ) ` C ) = ( F ` C ) ) |
|
| 69 | 67 68 | syl | |- ( ph -> ( ( F |` ( C [,] D ) ) ` C ) = ( F ` C ) ) |
| 70 | 65 69 | oveq12d | |- ( ph -> ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) = ( ( F ` D ) - ( F ` C ) ) ) |
| 71 | 70 | oveq1d | |- ( ph -> ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) |
| 72 | 71 | 3ad2ant1 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) |
| 73 | 58 59 72 | 3eqtrd | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) |
| 74 | simp3 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) |
|
| 75 | 74 | eqcomd | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) = ( ( RR _D F ) ` x ) ) |
| 76 | 23 63 | sseldd | |- ( ph -> D e. ( A (,) B ) ) |
| 77 | 3 76 | ffvelcdmd | |- ( ph -> ( F ` D ) e. RR ) |
| 78 | 3 7 | ffvelcdmd | |- ( ph -> ( F ` C ) e. RR ) |
| 79 | 77 78 | resubcld | |- ( ph -> ( ( F ` D ) - ( F ` C ) ) e. RR ) |
| 80 | 79 | recnd | |- ( ph -> ( ( F ` D ) - ( F ` C ) ) e. CC ) |
| 81 | 80 | 3ad2ant1 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( F ` D ) - ( F ` C ) ) e. CC ) |
| 82 | dvfre | |- ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 83 | 3 27 82 | syl2anc | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 84 | 4 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
| 85 | 83 84 | mpbid | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 86 | 85 | adantr | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 87 | 48 | sselda | |- ( ( ph /\ x e. ( C (,) D ) ) -> x e. ( A (,) B ) ) |
| 88 | 86 87 | ffvelcdmd | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
| 89 | 88 | recnd | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 90 | 89 | 3adant3 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 91 | 12 10 | resubcld | |- ( ph -> ( D - C ) e. RR ) |
| 92 | 91 | recnd | |- ( ph -> ( D - C ) e. CC ) |
| 93 | 92 | 3ad2ant1 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( D - C ) e. CC ) |
| 94 | 10 12 | posdifd | |- ( ph -> ( C < D <-> 0 < ( D - C ) ) ) |
| 95 | 16 94 | mpbid | |- ( ph -> 0 < ( D - C ) ) |
| 96 | 95 | gt0ne0d | |- ( ph -> ( D - C ) =/= 0 ) |
| 97 | 96 | 3ad2ant1 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( D - C ) =/= 0 ) |
| 98 | 81 90 93 97 | divmul3d | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) = ( ( RR _D F ) ` x ) <-> ( ( F ` D ) - ( F ` C ) ) = ( ( ( RR _D F ) ` x ) x. ( D - C ) ) ) ) |
| 99 | 75 98 | mpbid | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( F ` D ) - ( F ` C ) ) = ( ( ( RR _D F ) ` x ) x. ( D - C ) ) ) |
| 100 | 99 | fveq2d | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) = ( abs ` ( ( ( RR _D F ) ` x ) x. ( D - C ) ) ) ) |
| 101 | 92 | adantr | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( D - C ) e. CC ) |
| 102 | 89 101 | absmuld | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( abs ` ( ( ( RR _D F ) ` x ) x. ( D - C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) ) |
| 103 | 102 | 3adant3 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( ( RR _D F ) ` x ) x. ( D - C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) ) |
| 104 | 100 103 | eqtrd | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) ) |
| 105 | 10 12 61 | abssubge0d | |- ( ph -> ( abs ` ( D - C ) ) = ( D - C ) ) |
| 106 | 105 | oveq2d | |- ( ph -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( D - C ) ) ) |
| 107 | 106 | 3ad2ant1 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( D - C ) ) ) |
| 108 | 104 107 | eqtrd | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) = ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( D - C ) ) ) |
| 109 | 89 | abscld | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) e. RR ) |
| 110 | 5 | adantr | |- ( ( ph /\ x e. ( C (,) D ) ) -> K e. RR ) |
| 111 | 91 | adantr | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( D - C ) e. RR ) |
| 112 | 0red | |- ( ph -> 0 e. RR ) |
|
| 113 | 112 91 95 | ltled | |- ( ph -> 0 <_ ( D - C ) ) |
| 114 | 113 | adantr | |- ( ( ph /\ x e. ( C (,) D ) ) -> 0 <_ ( D - C ) ) |
| 115 | 6 | adantr | |- ( ( ph /\ x e. ( C (,) D ) ) -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
| 116 | rspa | |- ( ( A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
|
| 117 | 115 87 116 | syl2anc | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
| 118 | 109 110 111 114 117 | lemul1ad | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( D - C ) ) <_ ( K x. ( D - C ) ) ) |
| 119 | 118 | 3adant3 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( D - C ) ) <_ ( K x. ( D - C ) ) ) |
| 120 | 108 119 | eqbrtrd | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) ) |
| 121 | 73 120 | syld3an3 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) ) |
| 122 | 101 | abscld | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( abs ` ( D - C ) ) e. RR ) |
| 123 | 2 1 | resubcld | |- ( ph -> ( B - A ) e. RR ) |
| 124 | 123 | adantr | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( B - A ) e. RR ) |
| 125 | 89 | absge0d | |- ( ( ph /\ x e. ( C (,) D ) ) -> 0 <_ ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 126 | 101 | absge0d | |- ( ( ph /\ x e. ( C (,) D ) ) -> 0 <_ ( abs ` ( D - C ) ) ) |
| 127 | 12 1 2 10 46 45 | le2subd | |- ( ph -> ( D - C ) <_ ( B - A ) ) |
| 128 | 105 127 | eqbrtrd | |- ( ph -> ( abs ` ( D - C ) ) <_ ( B - A ) ) |
| 129 | 128 | adantr | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( abs ` ( D - C ) ) <_ ( B - A ) ) |
| 130 | 109 110 122 124 125 126 117 129 | lemul12ad | |- ( ( ph /\ x e. ( C (,) D ) ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) <_ ( K x. ( B - A ) ) ) |
| 131 | 130 | 3adant3 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) x. ( abs ` ( D - C ) ) ) <_ ( K x. ( B - A ) ) ) |
| 132 | 104 131 | eqbrtrd | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D F ) ` x ) = ( ( ( F ` D ) - ( F ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) |
| 133 | 73 132 | syld3an3 | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) |
| 134 | 121 133 | jca | |- ( ( ph /\ x e. ( C (,) D ) /\ ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) ) -> ( ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) /\ ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) ) |
| 135 | 134 | rexlimdv3a | |- ( ph -> ( E. x e. ( C (,) D ) ( ( RR _D ( F |` ( C [,] D ) ) ) ` x ) = ( ( ( ( F |` ( C [,] D ) ) ` D ) - ( ( F |` ( C [,] D ) ) ` C ) ) / ( D - C ) ) -> ( ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) /\ ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) ) ) |
| 136 | 53 135 | mpd | |- ( ph -> ( ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( D - C ) ) /\ ( abs ` ( ( F ` D ) - ( F ` C ) ) ) <_ ( K x. ( B - A ) ) ) ) |