This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 2-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fllelt | |- ( A e. RR -> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flval | |- ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
|
| 2 | 1 | eqcomd | |- ( A e. RR -> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( |_ ` A ) ) |
| 3 | flcl | |- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
|
| 4 | rebtwnz | |- ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) |
|
| 5 | breq1 | |- ( x = ( |_ ` A ) -> ( x <_ A <-> ( |_ ` A ) <_ A ) ) |
|
| 6 | oveq1 | |- ( x = ( |_ ` A ) -> ( x + 1 ) = ( ( |_ ` A ) + 1 ) ) |
|
| 7 | 6 | breq2d | |- ( x = ( |_ ` A ) -> ( A < ( x + 1 ) <-> A < ( ( |_ ` A ) + 1 ) ) ) |
| 8 | 5 7 | anbi12d | |- ( x = ( |_ ` A ) -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) ) ) |
| 9 | 8 | riota2 | |- ( ( ( |_ ` A ) e. ZZ /\ E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) -> ( ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( |_ ` A ) ) ) |
| 10 | 3 4 9 | syl2anc | |- ( A e. RR -> ( ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( |_ ` A ) ) ) |
| 11 | 2 10 | mpbird | |- ( A e. RR -> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) ) |