This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uzsup.1 | |- Z = ( ZZ>= ` M ) |
|
| Assertion | uzsup | |- ( M e. ZZ -> sup ( Z , RR* , < ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzsup.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | simpl | |- ( ( M e. ZZ /\ x e. RR ) -> M e. ZZ ) |
|
| 3 | flcl | |- ( x e. RR -> ( |_ ` x ) e. ZZ ) |
|
| 4 | 3 | peano2zd | |- ( x e. RR -> ( ( |_ ` x ) + 1 ) e. ZZ ) |
| 5 | id | |- ( M e. ZZ -> M e. ZZ ) |
|
| 6 | ifcl | |- ( ( ( ( |_ ` x ) + 1 ) e. ZZ /\ M e. ZZ ) -> if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) e. ZZ ) |
|
| 7 | 4 5 6 | syl2anr | |- ( ( M e. ZZ /\ x e. RR ) -> if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) e. ZZ ) |
| 8 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 9 | reflcl | |- ( x e. RR -> ( |_ ` x ) e. RR ) |
|
| 10 | peano2re | |- ( ( |_ ` x ) e. RR -> ( ( |_ ` x ) + 1 ) e. RR ) |
|
| 11 | 9 10 | syl | |- ( x e. RR -> ( ( |_ ` x ) + 1 ) e. RR ) |
| 12 | max1 | |- ( ( M e. RR /\ ( ( |_ ` x ) + 1 ) e. RR ) -> M <_ if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) ) |
|
| 13 | 8 11 12 | syl2an | |- ( ( M e. ZZ /\ x e. RR ) -> M <_ if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) ) |
| 14 | eluz2 | |- ( if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) e. ZZ /\ M <_ if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) ) ) |
|
| 15 | 2 7 13 14 | syl3anbrc | |- ( ( M e. ZZ /\ x e. RR ) -> if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) e. ( ZZ>= ` M ) ) |
| 16 | 15 1 | eleqtrrdi | |- ( ( M e. ZZ /\ x e. RR ) -> if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) e. Z ) |
| 17 | simpr | |- ( ( M e. ZZ /\ x e. RR ) -> x e. RR ) |
|
| 18 | 11 | adantl | |- ( ( M e. ZZ /\ x e. RR ) -> ( ( |_ ` x ) + 1 ) e. RR ) |
| 19 | 7 | zred | |- ( ( M e. ZZ /\ x e. RR ) -> if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) e. RR ) |
| 20 | fllep1 | |- ( x e. RR -> x <_ ( ( |_ ` x ) + 1 ) ) |
|
| 21 | 20 | adantl | |- ( ( M e. ZZ /\ x e. RR ) -> x <_ ( ( |_ ` x ) + 1 ) ) |
| 22 | max2 | |- ( ( M e. RR /\ ( ( |_ ` x ) + 1 ) e. RR ) -> ( ( |_ ` x ) + 1 ) <_ if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) ) |
|
| 23 | 8 11 22 | syl2an | |- ( ( M e. ZZ /\ x e. RR ) -> ( ( |_ ` x ) + 1 ) <_ if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) ) |
| 24 | 17 18 19 21 23 | letrd | |- ( ( M e. ZZ /\ x e. RR ) -> x <_ if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) ) |
| 25 | breq2 | |- ( n = if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) -> ( x <_ n <-> x <_ if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) ) ) |
|
| 26 | 25 | rspcev | |- ( ( if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) e. Z /\ x <_ if ( M <_ ( ( |_ ` x ) + 1 ) , ( ( |_ ` x ) + 1 ) , M ) ) -> E. n e. Z x <_ n ) |
| 27 | 16 24 26 | syl2anc | |- ( ( M e. ZZ /\ x e. RR ) -> E. n e. Z x <_ n ) |
| 28 | 27 | ralrimiva | |- ( M e. ZZ -> A. x e. RR E. n e. Z x <_ n ) |
| 29 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 30 | 1 29 | eqsstri | |- Z C_ ZZ |
| 31 | zssre | |- ZZ C_ RR |
|
| 32 | 30 31 | sstri | |- Z C_ RR |
| 33 | ressxr | |- RR C_ RR* |
|
| 34 | 32 33 | sstri | |- Z C_ RR* |
| 35 | supxrunb1 | |- ( Z C_ RR* -> ( A. x e. RR E. n e. Z x <_ n <-> sup ( Z , RR* , < ) = +oo ) ) |
|
| 36 | 34 35 | ax-mp | |- ( A. x e. RR E. n e. Z x <_ n <-> sup ( Z , RR* , < ) = +oo ) |
| 37 | 28 36 | sylib | |- ( M e. ZZ -> sup ( Z , RR* , < ) = +oo ) |