This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The midpoint is an element of the open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioomidp | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR* ) |
| 3 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR* ) |
| 5 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 6 | 5 | rehalfcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) e. RR ) |
| 7 | 6 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. RR ) |
| 8 | avglt1 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A < ( ( A + B ) / 2 ) ) ) |
|
| 9 | 8 | biimp3a | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A < ( ( A + B ) / 2 ) ) |
| 10 | avglt2 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
|
| 11 | 10 | biimp3a | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) < B ) |
| 12 | 2 4 7 9 11 | eliood | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |