This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnnnn0b | |- ( N e. NN <-> ( N e. NN0 /\ 0 < N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 2 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 3 | 1 2 | jca | |- ( N e. NN -> ( N e. NN0 /\ 0 < N ) ) |
| 4 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 5 | breq2 | |- ( N = 0 -> ( 0 < N <-> 0 < 0 ) ) |
|
| 6 | 0re | |- 0 e. RR |
|
| 7 | 6 | ltnri | |- -. 0 < 0 |
| 8 | 7 | pm2.21i | |- ( 0 < 0 -> N e. NN ) |
| 9 | 5 8 | biimtrdi | |- ( N = 0 -> ( 0 < N -> N e. NN ) ) |
| 10 | 9 | jao1i | |- ( ( N e. NN \/ N = 0 ) -> ( 0 < N -> N e. NN ) ) |
| 11 | 4 10 | sylbi | |- ( N e. NN0 -> ( 0 < N -> N e. NN ) ) |
| 12 | 11 | imp | |- ( ( N e. NN0 /\ 0 < N ) -> N e. NN ) |
| 13 | 3 12 | impbii | |- ( N e. NN <-> ( N e. NN0 /\ 0 < N ) ) |