This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of reciprocals of positive integers, multiplied by the factor A , converges to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcnvg | |- ( ( A e. CC /\ M e. NN ) -> ( n e. ( ZZ>= ` M ) |-> ( A / n ) ) ~~> 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluznn | |- ( ( M e. NN /\ n e. ( ZZ>= ` M ) ) -> n e. NN ) |
|
| 2 | eqidd | |- ( n e. NN -> ( m e. NN |-> ( A / m ) ) = ( m e. NN |-> ( A / m ) ) ) |
|
| 3 | oveq2 | |- ( m = n -> ( A / m ) = ( A / n ) ) |
|
| 4 | 3 | adantl | |- ( ( n e. NN /\ m = n ) -> ( A / m ) = ( A / n ) ) |
| 5 | id | |- ( n e. NN -> n e. NN ) |
|
| 6 | ovexd | |- ( n e. NN -> ( A / n ) e. _V ) |
|
| 7 | 2 4 5 6 | fvmptd | |- ( n e. NN -> ( ( m e. NN |-> ( A / m ) ) ` n ) = ( A / n ) ) |
| 8 | 7 | eqcomd | |- ( n e. NN -> ( A / n ) = ( ( m e. NN |-> ( A / m ) ) ` n ) ) |
| 9 | 1 8 | syl | |- ( ( M e. NN /\ n e. ( ZZ>= ` M ) ) -> ( A / n ) = ( ( m e. NN |-> ( A / m ) ) ` n ) ) |
| 10 | 9 | adantll | |- ( ( ( A e. CC /\ M e. NN ) /\ n e. ( ZZ>= ` M ) ) -> ( A / n ) = ( ( m e. NN |-> ( A / m ) ) ` n ) ) |
| 11 | 10 | mpteq2dva | |- ( ( A e. CC /\ M e. NN ) -> ( n e. ( ZZ>= ` M ) |-> ( A / n ) ) = ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) ) |
| 12 | divcnv | |- ( A e. CC -> ( m e. NN |-> ( A / m ) ) ~~> 0 ) |
|
| 13 | 12 | adantr | |- ( ( A e. CC /\ M e. NN ) -> ( m e. NN |-> ( A / m ) ) ~~> 0 ) |
| 14 | simpr | |- ( ( A e. CC /\ M e. NN ) -> M e. NN ) |
|
| 15 | 14 | nnzd | |- ( ( A e. CC /\ M e. NN ) -> M e. ZZ ) |
| 16 | nnex | |- NN e. _V |
|
| 17 | 16 | mptex | |- ( m e. NN |-> ( A / m ) ) e. _V |
| 18 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 19 | eqid | |- ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) = ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) |
|
| 20 | 18 19 | climmpt | |- ( ( M e. ZZ /\ ( m e. NN |-> ( A / m ) ) e. _V ) -> ( ( m e. NN |-> ( A / m ) ) ~~> 0 <-> ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) ~~> 0 ) ) |
| 21 | 15 17 20 | sylancl | |- ( ( A e. CC /\ M e. NN ) -> ( ( m e. NN |-> ( A / m ) ) ~~> 0 <-> ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) ~~> 0 ) ) |
| 22 | 13 21 | mpbid | |- ( ( A e. CC /\ M e. NN ) -> ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) ~~> 0 ) |
| 23 | 11 22 | eqbrtrd | |- ( ( A e. CC /\ M e. NN ) -> ( n e. ( ZZ>= ` M ) |-> ( A / n ) ) ~~> 0 ) |