This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . Substitutions for the set G . (Contributed by Jeff Madsen, 23-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | |- J = ( MetOpen ` D ) |
|
| heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
||
| heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
||
| heiborlem2.5 | |- A e. _V |
||
| heiborlem2.6 | |- C e. _V |
||
| Assertion | heiborlem2 | |- ( A G C <-> ( C e. NN0 /\ A e. ( F ` C ) /\ ( A B C ) e. K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | |- J = ( MetOpen ` D ) |
|
| 2 | heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
|
| 3 | heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
|
| 4 | heiborlem2.5 | |- A e. _V |
|
| 5 | heiborlem2.6 | |- C e. _V |
|
| 6 | eleq1 | |- ( y = A -> ( y e. ( F ` n ) <-> A e. ( F ` n ) ) ) |
|
| 7 | oveq1 | |- ( y = A -> ( y B n ) = ( A B n ) ) |
|
| 8 | 7 | eleq1d | |- ( y = A -> ( ( y B n ) e. K <-> ( A B n ) e. K ) ) |
| 9 | 6 8 | 3anbi23d | |- ( y = A -> ( ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) <-> ( n e. NN0 /\ A e. ( F ` n ) /\ ( A B n ) e. K ) ) ) |
| 10 | eleq1 | |- ( n = C -> ( n e. NN0 <-> C e. NN0 ) ) |
|
| 11 | fveq2 | |- ( n = C -> ( F ` n ) = ( F ` C ) ) |
|
| 12 | 11 | eleq2d | |- ( n = C -> ( A e. ( F ` n ) <-> A e. ( F ` C ) ) ) |
| 13 | oveq2 | |- ( n = C -> ( A B n ) = ( A B C ) ) |
|
| 14 | 13 | eleq1d | |- ( n = C -> ( ( A B n ) e. K <-> ( A B C ) e. K ) ) |
| 15 | 10 12 14 | 3anbi123d | |- ( n = C -> ( ( n e. NN0 /\ A e. ( F ` n ) /\ ( A B n ) e. K ) <-> ( C e. NN0 /\ A e. ( F ` C ) /\ ( A B C ) e. K ) ) ) |
| 16 | 4 5 9 15 3 | brab | |- ( A G C <-> ( C e. NN0 /\ A e. ( F ` C ) /\ ( A B C ) e. K ) ) |