This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . The function M is a set of point-and-radius pairs suitable for application to caubl . (Contributed by Jeff Madsen, 23-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | |- J = ( MetOpen ` D ) |
|
| heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
||
| heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
||
| heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
||
| heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
||
| heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
||
| heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
||
| heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
||
| heibor.10 | |- ( ph -> C G 0 ) |
||
| heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
||
| heibor.12 | |- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
||
| Assertion | heiborlem5 | |- ( ph -> M : NN --> ( X X. RR+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | |- J = ( MetOpen ` D ) |
|
| 2 | heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
|
| 3 | heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
|
| 4 | heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 5 | heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
|
| 6 | heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
|
| 7 | heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
|
| 8 | heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
|
| 9 | heibor.10 | |- ( ph -> C G 0 ) |
|
| 10 | heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
|
| 11 | heibor.12 | |- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
|
| 12 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 13 | inss1 | |- ( ~P X i^i Fin ) C_ ~P X |
|
| 14 | 6 | ffvelcdmda | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. ( ~P X i^i Fin ) ) |
| 15 | 13 14 | sselid | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. ~P X ) |
| 16 | 15 | elpwid | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) C_ X ) |
| 17 | 1 2 3 4 5 6 7 8 9 10 | heiborlem4 | |- ( ( ph /\ k e. NN0 ) -> ( S ` k ) G k ) |
| 18 | fvex | |- ( S ` k ) e. _V |
|
| 19 | vex | |- k e. _V |
|
| 20 | 1 2 3 18 19 | heiborlem2 | |- ( ( S ` k ) G k <-> ( k e. NN0 /\ ( S ` k ) e. ( F ` k ) /\ ( ( S ` k ) B k ) e. K ) ) |
| 21 | 20 | simp2bi | |- ( ( S ` k ) G k -> ( S ` k ) e. ( F ` k ) ) |
| 22 | 17 21 | syl | |- ( ( ph /\ k e. NN0 ) -> ( S ` k ) e. ( F ` k ) ) |
| 23 | 16 22 | sseldd | |- ( ( ph /\ k e. NN0 ) -> ( S ` k ) e. X ) |
| 24 | 12 23 | sylan2 | |- ( ( ph /\ k e. NN ) -> ( S ` k ) e. X ) |
| 25 | 24 | ralrimiva | |- ( ph -> A. k e. NN ( S ` k ) e. X ) |
| 26 | fveq2 | |- ( k = n -> ( S ` k ) = ( S ` n ) ) |
|
| 27 | 26 | eleq1d | |- ( k = n -> ( ( S ` k ) e. X <-> ( S ` n ) e. X ) ) |
| 28 | 27 | cbvralvw | |- ( A. k e. NN ( S ` k ) e. X <-> A. n e. NN ( S ` n ) e. X ) |
| 29 | 25 28 | sylib | |- ( ph -> A. n e. NN ( S ` n ) e. X ) |
| 30 | 3re | |- 3 e. RR |
|
| 31 | 3pos | |- 0 < 3 |
|
| 32 | 30 31 | elrpii | |- 3 e. RR+ |
| 33 | 2nn | |- 2 e. NN |
|
| 34 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 35 | nnexpcl | |- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
|
| 36 | 33 34 35 | sylancr | |- ( n e. NN -> ( 2 ^ n ) e. NN ) |
| 37 | 36 | nnrpd | |- ( n e. NN -> ( 2 ^ n ) e. RR+ ) |
| 38 | rpdivcl | |- ( ( 3 e. RR+ /\ ( 2 ^ n ) e. RR+ ) -> ( 3 / ( 2 ^ n ) ) e. RR+ ) |
|
| 39 | 32 37 38 | sylancr | |- ( n e. NN -> ( 3 / ( 2 ^ n ) ) e. RR+ ) |
| 40 | opelxpi | |- ( ( ( S ` n ) e. X /\ ( 3 / ( 2 ^ n ) ) e. RR+ ) -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) ) |
|
| 41 | 40 | expcom | |- ( ( 3 / ( 2 ^ n ) ) e. RR+ -> ( ( S ` n ) e. X -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) ) ) |
| 42 | 39 41 | syl | |- ( n e. NN -> ( ( S ` n ) e. X -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) ) ) |
| 43 | 42 | ralimia | |- ( A. n e. NN ( S ` n ) e. X -> A. n e. NN <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) ) |
| 44 | 29 43 | syl | |- ( ph -> A. n e. NN <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) ) |
| 45 | 11 | fmpt | |- ( A. n e. NN <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. e. ( X X. RR+ ) <-> M : NN --> ( X X. RR+ ) ) |
| 46 | 44 45 | sylib | |- ( ph -> M : NN --> ( X X. RR+ ) ) |