This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . Using the function T constructed in heiborlem3 , construct an infinite path in G . (Contributed by Jeff Madsen, 23-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | |- J = ( MetOpen ` D ) |
|
| heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
||
| heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
||
| heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
||
| heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
||
| heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
||
| heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
||
| heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
||
| heibor.10 | |- ( ph -> C G 0 ) |
||
| heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
||
| Assertion | heiborlem4 | |- ( ( ph /\ A e. NN0 ) -> ( S ` A ) G A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | |- J = ( MetOpen ` D ) |
|
| 2 | heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
|
| 3 | heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
|
| 4 | heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 5 | heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
|
| 6 | heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
|
| 7 | heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
|
| 8 | heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
|
| 9 | heibor.10 | |- ( ph -> C G 0 ) |
|
| 10 | heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
|
| 11 | fveq2 | |- ( x = 0 -> ( S ` x ) = ( S ` 0 ) ) |
|
| 12 | id | |- ( x = 0 -> x = 0 ) |
|
| 13 | 11 12 | breq12d | |- ( x = 0 -> ( ( S ` x ) G x <-> ( S ` 0 ) G 0 ) ) |
| 14 | 13 | imbi2d | |- ( x = 0 -> ( ( ph -> ( S ` x ) G x ) <-> ( ph -> ( S ` 0 ) G 0 ) ) ) |
| 15 | fveq2 | |- ( x = k -> ( S ` x ) = ( S ` k ) ) |
|
| 16 | id | |- ( x = k -> x = k ) |
|
| 17 | 15 16 | breq12d | |- ( x = k -> ( ( S ` x ) G x <-> ( S ` k ) G k ) ) |
| 18 | 17 | imbi2d | |- ( x = k -> ( ( ph -> ( S ` x ) G x ) <-> ( ph -> ( S ` k ) G k ) ) ) |
| 19 | fveq2 | |- ( x = ( k + 1 ) -> ( S ` x ) = ( S ` ( k + 1 ) ) ) |
|
| 20 | id | |- ( x = ( k + 1 ) -> x = ( k + 1 ) ) |
|
| 21 | 19 20 | breq12d | |- ( x = ( k + 1 ) -> ( ( S ` x ) G x <-> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) |
| 22 | 21 | imbi2d | |- ( x = ( k + 1 ) -> ( ( ph -> ( S ` x ) G x ) <-> ( ph -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) ) |
| 23 | fveq2 | |- ( x = A -> ( S ` x ) = ( S ` A ) ) |
|
| 24 | id | |- ( x = A -> x = A ) |
|
| 25 | 23 24 | breq12d | |- ( x = A -> ( ( S ` x ) G x <-> ( S ` A ) G A ) ) |
| 26 | 25 | imbi2d | |- ( x = A -> ( ( ph -> ( S ` x ) G x ) <-> ( ph -> ( S ` A ) G A ) ) ) |
| 27 | 10 | fveq1i | |- ( S ` 0 ) = ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` 0 ) |
| 28 | 0z | |- 0 e. ZZ |
|
| 29 | seq1 | |- ( 0 e. ZZ -> ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` 0 ) = ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` 0 ) ) |
|
| 30 | 28 29 | ax-mp | |- ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` 0 ) = ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` 0 ) |
| 31 | 27 30 | eqtri | |- ( S ` 0 ) = ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` 0 ) |
| 32 | 0nn0 | |- 0 e. NN0 |
|
| 33 | 3 | relopabiv | |- Rel G |
| 34 | 33 | brrelex1i | |- ( C G 0 -> C e. _V ) |
| 35 | 9 34 | syl | |- ( ph -> C e. _V ) |
| 36 | iftrue | |- ( m = 0 -> if ( m = 0 , C , ( m - 1 ) ) = C ) |
|
| 37 | eqid | |- ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) = ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) |
|
| 38 | 36 37 | fvmptg | |- ( ( 0 e. NN0 /\ C e. _V ) -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` 0 ) = C ) |
| 39 | 32 35 38 | sylancr | |- ( ph -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` 0 ) = C ) |
| 40 | 31 39 | eqtrid | |- ( ph -> ( S ` 0 ) = C ) |
| 41 | 40 9 | eqbrtrd | |- ( ph -> ( S ` 0 ) G 0 ) |
| 42 | df-br | |- ( ( S ` k ) G k <-> <. ( S ` k ) , k >. e. G ) |
|
| 43 | fveq2 | |- ( x = <. ( S ` k ) , k >. -> ( T ` x ) = ( T ` <. ( S ` k ) , k >. ) ) |
|
| 44 | df-ov | |- ( ( S ` k ) T k ) = ( T ` <. ( S ` k ) , k >. ) |
|
| 45 | 43 44 | eqtr4di | |- ( x = <. ( S ` k ) , k >. -> ( T ` x ) = ( ( S ` k ) T k ) ) |
| 46 | fvex | |- ( S ` k ) e. _V |
|
| 47 | vex | |- k e. _V |
|
| 48 | 46 47 | op2ndd | |- ( x = <. ( S ` k ) , k >. -> ( 2nd ` x ) = k ) |
| 49 | 48 | oveq1d | |- ( x = <. ( S ` k ) , k >. -> ( ( 2nd ` x ) + 1 ) = ( k + 1 ) ) |
| 50 | 45 49 | breq12d | |- ( x = <. ( S ` k ) , k >. -> ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) <-> ( ( S ` k ) T k ) G ( k + 1 ) ) ) |
| 51 | fveq2 | |- ( x = <. ( S ` k ) , k >. -> ( B ` x ) = ( B ` <. ( S ` k ) , k >. ) ) |
|
| 52 | df-ov | |- ( ( S ` k ) B k ) = ( B ` <. ( S ` k ) , k >. ) |
|
| 53 | 51 52 | eqtr4di | |- ( x = <. ( S ` k ) , k >. -> ( B ` x ) = ( ( S ` k ) B k ) ) |
| 54 | 45 49 | oveq12d | |- ( x = <. ( S ` k ) , k >. -> ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) = ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) |
| 55 | 53 54 | ineq12d | |- ( x = <. ( S ` k ) , k >. -> ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) = ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) ) |
| 56 | 55 | eleq1d | |- ( x = <. ( S ` k ) , k >. -> ( ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K <-> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) |
| 57 | 50 56 | anbi12d | |- ( x = <. ( S ` k ) , k >. -> ( ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) <-> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 58 | 57 | rspccv | |- ( A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) -> ( <. ( S ` k ) , k >. e. G -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 59 | 8 58 | syl | |- ( ph -> ( <. ( S ` k ) , k >. e. G -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 60 | 42 59 | biimtrid | |- ( ph -> ( ( S ` k ) G k -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 61 | seqp1 | |- ( k e. ( ZZ>= ` 0 ) -> ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
|
| 62 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 63 | 61 62 | eleq2s | |- ( k e. NN0 -> ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
| 64 | 10 | fveq1i | |- ( S ` ( k + 1 ) ) = ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) |
| 65 | 10 | fveq1i | |- ( S ` k ) = ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) |
| 66 | 65 | oveq1i | |- ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) |
| 67 | 63 64 66 | 3eqtr4g | |- ( k e. NN0 -> ( S ` ( k + 1 ) ) = ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
| 68 | eqeq1 | |- ( m = ( k + 1 ) -> ( m = 0 <-> ( k + 1 ) = 0 ) ) |
|
| 69 | oveq1 | |- ( m = ( k + 1 ) -> ( m - 1 ) = ( ( k + 1 ) - 1 ) ) |
|
| 70 | 68 69 | ifbieq2d | |- ( m = ( k + 1 ) -> if ( m = 0 , C , ( m - 1 ) ) = if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) ) |
| 71 | peano2nn0 | |- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
|
| 72 | nn0p1nn | |- ( k e. NN0 -> ( k + 1 ) e. NN ) |
|
| 73 | nnne0 | |- ( ( k + 1 ) e. NN -> ( k + 1 ) =/= 0 ) |
|
| 74 | 73 | neneqd | |- ( ( k + 1 ) e. NN -> -. ( k + 1 ) = 0 ) |
| 75 | iffalse | |- ( -. ( k + 1 ) = 0 -> if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) = ( ( k + 1 ) - 1 ) ) |
|
| 76 | 72 74 75 | 3syl | |- ( k e. NN0 -> if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) = ( ( k + 1 ) - 1 ) ) |
| 77 | ovex | |- ( ( k + 1 ) - 1 ) e. _V |
|
| 78 | 76 77 | eqeltrdi | |- ( k e. NN0 -> if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) e. _V ) |
| 79 | 37 70 71 78 | fvmptd3 | |- ( k e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) = if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) ) |
| 80 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 81 | ax-1cn | |- 1 e. CC |
|
| 82 | pncan | |- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
|
| 83 | 80 81 82 | sylancl | |- ( k e. NN0 -> ( ( k + 1 ) - 1 ) = k ) |
| 84 | 79 76 83 | 3eqtrd | |- ( k e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) = k ) |
| 85 | 84 | oveq2d | |- ( k e. NN0 -> ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) = ( ( S ` k ) T k ) ) |
| 86 | 67 85 | eqtrd | |- ( k e. NN0 -> ( S ` ( k + 1 ) ) = ( ( S ` k ) T k ) ) |
| 87 | 86 | breq1d | |- ( k e. NN0 -> ( ( S ` ( k + 1 ) ) G ( k + 1 ) <-> ( ( S ` k ) T k ) G ( k + 1 ) ) ) |
| 88 | 87 | biimprd | |- ( k e. NN0 -> ( ( ( S ` k ) T k ) G ( k + 1 ) -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) |
| 89 | 88 | adantrd | |- ( k e. NN0 -> ( ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) |
| 90 | 60 89 | syl9r | |- ( k e. NN0 -> ( ph -> ( ( S ` k ) G k -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) ) |
| 91 | 90 | a2d | |- ( k e. NN0 -> ( ( ph -> ( S ` k ) G k ) -> ( ph -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) ) ) |
| 92 | 14 18 22 26 41 91 | nn0ind | |- ( A e. NN0 -> ( ph -> ( S ` A ) G A ) ) |
| 93 | 92 | impcom | |- ( ( ph /\ A e. NN0 ) -> ( S ` A ) G A ) |