This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem con2bii

Description: A contraposition inference. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypothesis con2bii.1
|- ( ph <-> -. ps )
Assertion con2bii
|- ( ps <-> -. ph )

Proof

Step Hyp Ref Expression
1 con2bii.1
 |-  ( ph <-> -. ps )
2 notnotb
 |-  ( ps <-> -. -. ps )
3 2 1 xchbinxr
 |-  ( ps <-> -. ph )