This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | |- J = ( MetOpen ` D ) |
|
| heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
||
| heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
||
| heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
||
| heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
||
| heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
||
| heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
||
| heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
||
| heibor.10 | |- ( ph -> C G 0 ) |
||
| heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
||
| heibor.12 | |- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
||
| Assertion | heiborlem7 | |- A. r e. RR+ E. k e. NN ( 2nd ` ( M ` k ) ) < r |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | |- J = ( MetOpen ` D ) |
|
| 2 | heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
|
| 3 | heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
|
| 4 | heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 5 | heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
|
| 6 | heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
|
| 7 | heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
|
| 8 | heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
|
| 9 | heibor.10 | |- ( ph -> C G 0 ) |
|
| 10 | heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
|
| 11 | heibor.12 | |- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
|
| 12 | 3re | |- 3 e. RR |
|
| 13 | 3pos | |- 0 < 3 |
|
| 14 | 12 13 | elrpii | |- 3 e. RR+ |
| 15 | rpdivcl | |- ( ( r e. RR+ /\ 3 e. RR+ ) -> ( r / 3 ) e. RR+ ) |
|
| 16 | 14 15 | mpan2 | |- ( r e. RR+ -> ( r / 3 ) e. RR+ ) |
| 17 | 2re | |- 2 e. RR |
|
| 18 | 1lt2 | |- 1 < 2 |
|
| 19 | expnlbnd | |- ( ( ( r / 3 ) e. RR+ /\ 2 e. RR /\ 1 < 2 ) -> E. k e. NN ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) |
|
| 20 | 17 18 19 | mp3an23 | |- ( ( r / 3 ) e. RR+ -> E. k e. NN ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) |
| 21 | 16 20 | syl | |- ( r e. RR+ -> E. k e. NN ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) |
| 22 | 2nn | |- 2 e. NN |
|
| 23 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 24 | nnexpcl | |- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
|
| 25 | 22 23 24 | sylancr | |- ( k e. NN -> ( 2 ^ k ) e. NN ) |
| 26 | 25 | nnrpd | |- ( k e. NN -> ( 2 ^ k ) e. RR+ ) |
| 27 | rpcn | |- ( ( 2 ^ k ) e. RR+ -> ( 2 ^ k ) e. CC ) |
|
| 28 | rpne0 | |- ( ( 2 ^ k ) e. RR+ -> ( 2 ^ k ) =/= 0 ) |
|
| 29 | 3cn | |- 3 e. CC |
|
| 30 | divrec | |- ( ( 3 e. CC /\ ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( 3 / ( 2 ^ k ) ) = ( 3 x. ( 1 / ( 2 ^ k ) ) ) ) |
|
| 31 | 29 30 | mp3an1 | |- ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( 3 / ( 2 ^ k ) ) = ( 3 x. ( 1 / ( 2 ^ k ) ) ) ) |
| 32 | 27 28 31 | syl2anc | |- ( ( 2 ^ k ) e. RR+ -> ( 3 / ( 2 ^ k ) ) = ( 3 x. ( 1 / ( 2 ^ k ) ) ) ) |
| 33 | 26 32 | syl | |- ( k e. NN -> ( 3 / ( 2 ^ k ) ) = ( 3 x. ( 1 / ( 2 ^ k ) ) ) ) |
| 34 | 33 | adantl | |- ( ( r e. RR+ /\ k e. NN ) -> ( 3 / ( 2 ^ k ) ) = ( 3 x. ( 1 / ( 2 ^ k ) ) ) ) |
| 35 | 34 | breq1d | |- ( ( r e. RR+ /\ k e. NN ) -> ( ( 3 / ( 2 ^ k ) ) < r <-> ( 3 x. ( 1 / ( 2 ^ k ) ) ) < r ) ) |
| 36 | 25 | nnrecred | |- ( k e. NN -> ( 1 / ( 2 ^ k ) ) e. RR ) |
| 37 | rpre | |- ( r e. RR+ -> r e. RR ) |
|
| 38 | 12 13 | pm3.2i | |- ( 3 e. RR /\ 0 < 3 ) |
| 39 | ltmuldiv2 | |- ( ( ( 1 / ( 2 ^ k ) ) e. RR /\ r e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( 3 x. ( 1 / ( 2 ^ k ) ) ) < r <-> ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) ) |
|
| 40 | 38 39 | mp3an3 | |- ( ( ( 1 / ( 2 ^ k ) ) e. RR /\ r e. RR ) -> ( ( 3 x. ( 1 / ( 2 ^ k ) ) ) < r <-> ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) ) |
| 41 | 36 37 40 | syl2anr | |- ( ( r e. RR+ /\ k e. NN ) -> ( ( 3 x. ( 1 / ( 2 ^ k ) ) ) < r <-> ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) ) |
| 42 | 35 41 | bitrd | |- ( ( r e. RR+ /\ k e. NN ) -> ( ( 3 / ( 2 ^ k ) ) < r <-> ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) ) |
| 43 | 42 | rexbidva | |- ( r e. RR+ -> ( E. k e. NN ( 3 / ( 2 ^ k ) ) < r <-> E. k e. NN ( 1 / ( 2 ^ k ) ) < ( r / 3 ) ) ) |
| 44 | 21 43 | mpbird | |- ( r e. RR+ -> E. k e. NN ( 3 / ( 2 ^ k ) ) < r ) |
| 45 | fveq2 | |- ( n = k -> ( S ` n ) = ( S ` k ) ) |
|
| 46 | oveq2 | |- ( n = k -> ( 2 ^ n ) = ( 2 ^ k ) ) |
|
| 47 | 46 | oveq2d | |- ( n = k -> ( 3 / ( 2 ^ n ) ) = ( 3 / ( 2 ^ k ) ) ) |
| 48 | 45 47 | opeq12d | |- ( n = k -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. = <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
| 49 | opex | |- <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. e. _V |
|
| 50 | 48 11 49 | fvmpt | |- ( k e. NN -> ( M ` k ) = <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
| 51 | 50 | fveq2d | |- ( k e. NN -> ( 2nd ` ( M ` k ) ) = ( 2nd ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) ) |
| 52 | fvex | |- ( S ` k ) e. _V |
|
| 53 | ovex | |- ( 3 / ( 2 ^ k ) ) e. _V |
|
| 54 | 52 53 | op2nd | |- ( 2nd ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) = ( 3 / ( 2 ^ k ) ) |
| 55 | 51 54 | eqtrdi | |- ( k e. NN -> ( 2nd ` ( M ` k ) ) = ( 3 / ( 2 ^ k ) ) ) |
| 56 | 55 | breq1d | |- ( k e. NN -> ( ( 2nd ` ( M ` k ) ) < r <-> ( 3 / ( 2 ^ k ) ) < r ) ) |
| 57 | 56 | rexbiia | |- ( E. k e. NN ( 2nd ` ( M ` k ) ) < r <-> E. k e. NN ( 3 / ( 2 ^ k ) ) < r ) |
| 58 | 44 57 | sylibr | |- ( r e. RR+ -> E. k e. NN ( 2nd ` ( M ` k ) ) < r ) |
| 59 | 58 | rgen | |- A. r e. RR+ E. k e. NN ( 2nd ` ( M ` k ) ) < r |