This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two concentric balls have different radii, the closure of the smaller one is contained in the larger one. (Contributed by Mario Carneiro, 5-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | blsscls.2 | |- J = ( MetOpen ` D ) |
|
| Assertion | blsscls | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* /\ R < S ) ) -> ( ( cls ` J ) ` ( P ( ball ` D ) R ) ) C_ ( P ( ball ` D ) S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blsscls.2 | |- J = ( MetOpen ` D ) |
|
| 2 | eqid | |- { x e. X | ( P D x ) <_ R } = { x e. X | ( P D x ) <_ R } |
|
| 3 | 1 2 | blcls | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( cls ` J ) ` ( P ( ball ` D ) R ) ) C_ { x e. X | ( P D x ) <_ R } ) |
| 4 | 3 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ R e. RR* ) -> ( ( cls ` J ) ` ( P ( ball ` D ) R ) ) C_ { x e. X | ( P D x ) <_ R } ) |
| 5 | 4 | 3ad2antr1 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* /\ R < S ) ) -> ( ( cls ` J ) ` ( P ( ball ` D ) R ) ) C_ { x e. X | ( P D x ) <_ R } ) |
| 6 | 1 2 | blsscls2 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* /\ R < S ) ) -> { x e. X | ( P D x ) <_ R } C_ ( P ( ball ` D ) S ) ) |
| 7 | 5 6 | sstrd | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* /\ R < S ) ) -> ( ( cls ` J ) ` ( P ( ball ` D ) R ) ) C_ ( P ( ball ` D ) S ) ) |