This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The convergent point of a sequence of nested balls is in the closures of any of the balls (i.e. it is in the intersection of the closures). Indeed, it is the only point in the intersection because a metric space is Hausdorff, but we don't prove this here. (Contributed by Mario Carneiro, 21-Jan-2014) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caubl.2 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| caubl.3 | |- ( ph -> F : NN --> ( X X. RR+ ) ) |
||
| caubl.4 | |- ( ph -> A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) |
||
| caublcls.6 | |- J = ( MetOpen ` D ) |
||
| Assertion | caublcls | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> P e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caubl.2 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 2 | caubl.3 | |- ( ph -> F : NN --> ( X X. RR+ ) ) |
|
| 3 | caubl.4 | |- ( ph -> A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) |
|
| 4 | caublcls.6 | |- J = ( MetOpen ` D ) |
|
| 5 | eqid | |- ( ZZ>= ` A ) = ( ZZ>= ` A ) |
|
| 6 | 1 | 3ad2ant1 | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> D e. ( *Met ` X ) ) |
| 7 | 4 | mopntopon | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 8 | 6 7 | syl | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> J e. ( TopOn ` X ) ) |
| 9 | simp3 | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> A e. NN ) |
|
| 10 | 9 | nnzd | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> A e. ZZ ) |
| 11 | simp2 | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 1st o. F ) ( ~~>t ` J ) P ) |
|
| 12 | 2fveq3 | |- ( r = A -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` A ) ) ) |
|
| 13 | 12 | sseq1d | |- ( r = A -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 14 | 13 | imbi2d | |- ( r = A -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
| 15 | 2fveq3 | |- ( r = k -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) |
|
| 16 | 15 | sseq1d | |- ( r = k -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 17 | 16 | imbi2d | |- ( r = k -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
| 18 | 2fveq3 | |- ( r = ( k + 1 ) -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) |
|
| 19 | 18 | sseq1d | |- ( r = ( k + 1 ) -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 20 | 19 | imbi2d | |- ( r = ( k + 1 ) -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
| 21 | ssid | |- ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) |
|
| 22 | 21 | 2a1i | |- ( A e. ZZ -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 23 | eluznn | |- ( ( A e. NN /\ k e. ( ZZ>= ` A ) ) -> k e. NN ) |
|
| 24 | fvoveq1 | |- ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) |
|
| 25 | 24 | fveq2d | |- ( n = k -> ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) |
| 26 | 2fveq3 | |- ( n = k -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) |
|
| 27 | 25 26 | sseq12d | |- ( n = k -> ( ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) ) |
| 28 | 27 | rspccva | |- ( ( A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) /\ k e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
| 29 | 3 23 28 | syl2an | |- ( ( ph /\ ( A e. NN /\ k e. ( ZZ>= ` A ) ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
| 30 | 29 | anassrs | |- ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
| 31 | sstr2 | |- ( ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
|
| 32 | 30 31 | syl | |- ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 33 | 32 | expcom | |- ( k e. ( ZZ>= ` A ) -> ( ( ph /\ A e. NN ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
| 34 | 33 | a2d | |- ( k e. ( ZZ>= ` A ) -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
| 35 | 14 17 20 17 22 34 | uzind4 | |- ( k e. ( ZZ>= ` A ) -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 36 | 35 | impcom | |- ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) |
| 37 | 36 | 3adantl2 | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) |
| 38 | 6 | adantr | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> D e. ( *Met ` X ) ) |
| 39 | simpl1 | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ph ) |
|
| 40 | 39 2 | syl | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> F : NN --> ( X X. RR+ ) ) |
| 41 | 23 | 3ad2antl3 | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> k e. NN ) |
| 42 | 40 41 | ffvelcdmd | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( F ` k ) e. ( X X. RR+ ) ) |
| 43 | xp1st | |- ( ( F ` k ) e. ( X X. RR+ ) -> ( 1st ` ( F ` k ) ) e. X ) |
|
| 44 | 42 43 | syl | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 1st ` ( F ` k ) ) e. X ) |
| 45 | xp2nd | |- ( ( F ` k ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) |
|
| 46 | 42 45 | syl | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) |
| 47 | blcntr | |- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` k ) ) e. X /\ ( 2nd ` ( F ` k ) ) e. RR+ ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
|
| 48 | 38 44 46 47 | syl3anc | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
| 49 | fvco3 | |- ( ( F : NN --> ( X X. RR+ ) /\ k e. NN ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) |
|
| 50 | 40 41 49 | syl2anc | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) |
| 51 | 1st2nd2 | |- ( ( F ` k ) e. ( X X. RR+ ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
|
| 52 | 42 51 | syl | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
| 53 | 52 | fveq2d | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) ) |
| 54 | df-ov | |- ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
|
| 55 | 53 54 | eqtr4di | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
| 56 | 48 50 55 | 3eltr4d | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) e. ( ( ball ` D ) ` ( F ` k ) ) ) |
| 57 | 37 56 | sseldd | |- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) e. ( ( ball ` D ) ` ( F ` A ) ) ) |
| 58 | 2 | ffvelcdmda | |- ( ( ph /\ A e. NN ) -> ( F ` A ) e. ( X X. RR+ ) ) |
| 59 | 58 | 3adant2 | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( F ` A ) e. ( X X. RR+ ) ) |
| 60 | 1st2nd2 | |- ( ( F ` A ) e. ( X X. RR+ ) -> ( F ` A ) = <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) |
|
| 61 | 59 60 | syl | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( F ` A ) = <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) |
| 62 | 61 | fveq2d | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) ) |
| 63 | df-ov | |- ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) |
|
| 64 | 62 63 | eqtr4di | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) = ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) ) |
| 65 | xp1st | |- ( ( F ` A ) e. ( X X. RR+ ) -> ( 1st ` ( F ` A ) ) e. X ) |
|
| 66 | 59 65 | syl | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 1st ` ( F ` A ) ) e. X ) |
| 67 | xp2nd | |- ( ( F ` A ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` A ) ) e. RR+ ) |
|
| 68 | 59 67 | syl | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 2nd ` ( F ` A ) ) e. RR+ ) |
| 69 | 68 | rpxrd | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 2nd ` ( F ` A ) ) e. RR* ) |
| 70 | blssm | |- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` A ) ) e. X /\ ( 2nd ` ( F ` A ) ) e. RR* ) -> ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) C_ X ) |
|
| 71 | 6 66 69 70 | syl3anc | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) C_ X ) |
| 72 | 64 71 | eqsstrd | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ X ) |
| 73 | 5 8 10 11 57 72 | lmcls | |- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> P e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( F ` A ) ) ) ) |