This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of subclass relationship. Exercise 5 of TakeutiZaring p. 17. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 14-Jun-2011) Avoid axioms. (Revised by GG, 19-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sstr2 | |- ( A C_ B -> ( B C_ C -> A C_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 | |- ( ( x e. A -> x e. B ) -> ( ( x e. B -> x e. C ) -> ( x e. A -> x e. C ) ) ) |
|
| 2 | 1 | al2imi | |- ( A. x ( x e. A -> x e. B ) -> ( A. x ( x e. B -> x e. C ) -> A. x ( x e. A -> x e. C ) ) ) |
| 3 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 4 | df-ss | |- ( B C_ C <-> A. x ( x e. B -> x e. C ) ) |
|
| 5 | df-ss | |- ( A C_ C <-> A. x ( x e. A -> x e. C ) ) |
|
| 6 | 4 5 | imbi12i | |- ( ( B C_ C -> A C_ C ) <-> ( A. x ( x e. B -> x e. C ) -> A. x ( x e. A -> x e. C ) ) ) |
| 7 | 2 3 6 | 3imtr4i | |- ( A C_ B -> ( B C_ C -> A C_ C ) ) |