This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . Discharge the hypotheses of heiborlem8 by applying caubl to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | |- J = ( MetOpen ` D ) |
|
| heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
||
| heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
||
| heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
||
| heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
||
| heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
||
| heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
||
| heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
||
| heibor.10 | |- ( ph -> C G 0 ) |
||
| heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
||
| heibor.12 | |- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
||
| heibor.13 | |- ( ph -> U C_ J ) |
||
| heiborlem9.14 | |- ( ph -> U. U = X ) |
||
| Assertion | heiborlem9 | |- ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | |- J = ( MetOpen ` D ) |
|
| 2 | heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
|
| 3 | heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
|
| 4 | heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 5 | heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
|
| 6 | heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
|
| 7 | heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
|
| 8 | heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
|
| 9 | heibor.10 | |- ( ph -> C G 0 ) |
|
| 10 | heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
|
| 11 | heibor.12 | |- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
|
| 12 | heibor.13 | |- ( ph -> U C_ J ) |
|
| 13 | heiborlem9.14 | |- ( ph -> U. U = X ) |
|
| 14 | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
|
| 15 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 16 | 5 14 15 | 3syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 17 | 1 | mopntopon | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 18 | 16 17 | syl | |- ( ph -> J e. ( TopOn ` X ) ) |
| 19 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem5 | |- ( ph -> M : NN --> ( X X. RR+ ) ) |
| 20 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem6 | |- ( ph -> A. k e. NN ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( M ` k ) ) ) |
| 21 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem7 | |- A. r e. RR+ E. k e. NN ( 2nd ` ( M ` k ) ) < r |
| 22 | 21 | a1i | |- ( ph -> A. r e. RR+ E. k e. NN ( 2nd ` ( M ` k ) ) < r ) |
| 23 | 16 19 20 22 | caubl | |- ( ph -> ( 1st o. M ) e. ( Cau ` D ) ) |
| 24 | 1 | cmetcau | |- ( ( D e. ( CMet ` X ) /\ ( 1st o. M ) e. ( Cau ` D ) ) -> ( 1st o. M ) e. dom ( ~~>t ` J ) ) |
| 25 | 5 23 24 | syl2anc | |- ( ph -> ( 1st o. M ) e. dom ( ~~>t ` J ) ) |
| 26 | 1 | methaus | |- ( D e. ( *Met ` X ) -> J e. Haus ) |
| 27 | 16 26 | syl | |- ( ph -> J e. Haus ) |
| 28 | lmfun | |- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
|
| 29 | funfvbrb | |- ( Fun ( ~~>t ` J ) -> ( ( 1st o. M ) e. dom ( ~~>t ` J ) <-> ( 1st o. M ) ( ~~>t ` J ) ( ( ~~>t ` J ) ` ( 1st o. M ) ) ) ) |
|
| 30 | 27 28 29 | 3syl | |- ( ph -> ( ( 1st o. M ) e. dom ( ~~>t ` J ) <-> ( 1st o. M ) ( ~~>t ` J ) ( ( ~~>t ` J ) ` ( 1st o. M ) ) ) ) |
| 31 | 25 30 | mpbid | |- ( ph -> ( 1st o. M ) ( ~~>t ` J ) ( ( ~~>t ` J ) ` ( 1st o. M ) ) ) |
| 32 | lmcl | |- ( ( J e. ( TopOn ` X ) /\ ( 1st o. M ) ( ~~>t ` J ) ( ( ~~>t ` J ) ` ( 1st o. M ) ) ) -> ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. X ) |
|
| 33 | 18 31 32 | syl2anc | |- ( ph -> ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. X ) |
| 34 | 33 13 | eleqtrrd | |- ( ph -> ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. U. U ) |
| 35 | eluni2 | |- ( ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. U. U <-> E. t e. U ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) |
|
| 36 | 34 35 | sylib | |- ( ph -> E. t e. U ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) |
| 37 | 5 | adantr | |- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> D e. ( CMet ` X ) ) |
| 38 | 6 | adantr | |- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> F : NN0 --> ( ~P X i^i Fin ) ) |
| 39 | 7 | adantr | |- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
| 40 | 8 | adantr | |- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
| 41 | 9 | adantr | |- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> C G 0 ) |
| 42 | 12 | adantr | |- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> U C_ J ) |
| 43 | fvex | |- ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. _V |
|
| 44 | simprr | |- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) |
|
| 45 | simprl | |- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> t e. U ) |
|
| 46 | 31 | adantr | |- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> ( 1st o. M ) ( ~~>t ` J ) ( ( ~~>t ` J ) ` ( 1st o. M ) ) ) |
| 47 | 1 2 3 4 37 38 39 40 41 10 11 42 43 44 45 46 | heiborlem8 | |- ( ( ph /\ ( t e. U /\ ( ( ~~>t ` J ) ` ( 1st o. M ) ) e. t ) ) -> ps ) |
| 48 | 36 47 | rexlimddv | |- ( ph -> ps ) |