This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The asymptotic behavior of sum_ m <_ A , 1 / m = log A + gamma + O ( 1 / A ) . (Contributed by Mario Carneiro, 14-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harmonicbnd4 | |- ( A e. RR+ -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) <_ ( 1 / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | |- ( A e. RR+ -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
|
| 2 | elfznn | |- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) |
|
| 3 | 2 | adantl | |- ( ( A e. RR+ /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. NN ) |
| 4 | 3 | nnrecred | |- ( ( A e. RR+ /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / m ) e. RR ) |
| 5 | 1 4 | fsumrecl | |- ( A e. RR+ -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. RR ) |
| 6 | 5 | recnd | |- ( A e. RR+ -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. CC ) |
| 7 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 8 | 7 | recnd | |- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 9 | emre | |- gamma e. RR |
|
| 10 | 9 | a1i | |- ( A e. RR+ -> gamma e. RR ) |
| 11 | 10 | recnd | |- ( A e. RR+ -> gamma e. CC ) |
| 12 | 6 8 11 | subsub4d | |- ( A e. RR+ -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) - gamma ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) |
| 13 | 12 | fveq2d | |- ( A e. RR+ -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) - gamma ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) |
| 14 | rpreccl | |- ( A e. RR+ -> ( 1 / A ) e. RR+ ) |
|
| 15 | 14 | rpred | |- ( A e. RR+ -> ( 1 / A ) e. RR ) |
| 16 | resubcl | |- ( ( gamma e. RR /\ ( 1 / A ) e. RR ) -> ( gamma - ( 1 / A ) ) e. RR ) |
|
| 17 | 9 15 16 | sylancr | |- ( A e. RR+ -> ( gamma - ( 1 / A ) ) e. RR ) |
| 18 | rprege0 | |- ( A e. RR+ -> ( A e. RR /\ 0 <_ A ) ) |
|
| 19 | flge0nn0 | |- ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 ) |
|
| 20 | 18 19 | syl | |- ( A e. RR+ -> ( |_ ` A ) e. NN0 ) |
| 21 | nn0p1nn | |- ( ( |_ ` A ) e. NN0 -> ( ( |_ ` A ) + 1 ) e. NN ) |
|
| 22 | 20 21 | syl | |- ( A e. RR+ -> ( ( |_ ` A ) + 1 ) e. NN ) |
| 23 | 22 | nnrpd | |- ( A e. RR+ -> ( ( |_ ` A ) + 1 ) e. RR+ ) |
| 24 | relogcl | |- ( ( ( |_ ` A ) + 1 ) e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) e. RR ) |
|
| 25 | 23 24 | syl | |- ( A e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) e. RR ) |
| 26 | 5 25 | resubcld | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. RR ) |
| 27 | 5 7 | resubcld | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) e. RR ) |
| 28 | 22 | nnrecred | |- ( A e. RR+ -> ( 1 / ( ( |_ ` A ) + 1 ) ) e. RR ) |
| 29 | fzfid | |- ( A e. RR+ -> ( 1 ... ( ( |_ ` A ) + 1 ) ) e. Fin ) |
|
| 30 | elfznn | |- ( m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) -> m e. NN ) |
|
| 31 | 30 | adantl | |- ( ( A e. RR+ /\ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ) -> m e. NN ) |
| 32 | 31 | nnrecred | |- ( ( A e. RR+ /\ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ) -> ( 1 / m ) e. RR ) |
| 33 | 29 32 | fsumrecl | |- ( A e. RR+ -> sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) e. RR ) |
| 34 | 33 25 | resubcld | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. RR ) |
| 35 | harmonicbnd | |- ( ( ( |_ ` A ) + 1 ) e. NN -> ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( gamma [,] 1 ) ) |
|
| 36 | 22 35 | syl | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( gamma [,] 1 ) ) |
| 37 | 1re | |- 1 e. RR |
|
| 38 | 9 37 | elicc2i | |- ( ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( gamma [,] 1 ) <-> ( ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. RR /\ gamma <_ ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) /\ ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <_ 1 ) ) |
| 39 | 38 | simp2bi | |- ( ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( gamma [,] 1 ) -> gamma <_ ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 40 | 36 39 | syl | |- ( A e. RR+ -> gamma <_ ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 41 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 42 | fllep1 | |- ( A e. RR -> A <_ ( ( |_ ` A ) + 1 ) ) |
|
| 43 | 41 42 | syl | |- ( A e. RR+ -> A <_ ( ( |_ ` A ) + 1 ) ) |
| 44 | rpregt0 | |- ( A e. RR+ -> ( A e. RR /\ 0 < A ) ) |
|
| 45 | 22 | nnred | |- ( A e. RR+ -> ( ( |_ ` A ) + 1 ) e. RR ) |
| 46 | 22 | nngt0d | |- ( A e. RR+ -> 0 < ( ( |_ ` A ) + 1 ) ) |
| 47 | lerec | |- ( ( ( A e. RR /\ 0 < A ) /\ ( ( ( |_ ` A ) + 1 ) e. RR /\ 0 < ( ( |_ ` A ) + 1 ) ) ) -> ( A <_ ( ( |_ ` A ) + 1 ) <-> ( 1 / ( ( |_ ` A ) + 1 ) ) <_ ( 1 / A ) ) ) |
|
| 48 | 44 45 46 47 | syl12anc | |- ( A e. RR+ -> ( A <_ ( ( |_ ` A ) + 1 ) <-> ( 1 / ( ( |_ ` A ) + 1 ) ) <_ ( 1 / A ) ) ) |
| 49 | 43 48 | mpbid | |- ( A e. RR+ -> ( 1 / ( ( |_ ` A ) + 1 ) ) <_ ( 1 / A ) ) |
| 50 | 10 28 34 15 40 49 | le2subd | |- ( A e. RR+ -> ( gamma - ( 1 / A ) ) <_ ( ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) - ( 1 / ( ( |_ ` A ) + 1 ) ) ) ) |
| 51 | 33 | recnd | |- ( A e. RR+ -> sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) e. CC ) |
| 52 | 25 | recnd | |- ( A e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) e. CC ) |
| 53 | 28 | recnd | |- ( A e. RR+ -> ( 1 / ( ( |_ ` A ) + 1 ) ) e. CC ) |
| 54 | 51 52 53 | sub32d | |- ( A e. RR+ -> ( ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) - ( 1 / ( ( |_ ` A ) + 1 ) ) ) = ( ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( 1 / ( ( |_ ` A ) + 1 ) ) ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 55 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 56 | 22 55 | eleqtrdi | |- ( A e. RR+ -> ( ( |_ ` A ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 57 | 32 | recnd | |- ( ( A e. RR+ /\ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ) -> ( 1 / m ) e. CC ) |
| 58 | oveq2 | |- ( m = ( ( |_ ` A ) + 1 ) -> ( 1 / m ) = ( 1 / ( ( |_ ` A ) + 1 ) ) ) |
|
| 59 | 56 57 58 | fsumm1 | |- ( A e. RR+ -> sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) = ( sum_ m e. ( 1 ... ( ( ( |_ ` A ) + 1 ) - 1 ) ) ( 1 / m ) + ( 1 / ( ( |_ ` A ) + 1 ) ) ) ) |
| 60 | 20 | nn0cnd | |- ( A e. RR+ -> ( |_ ` A ) e. CC ) |
| 61 | ax-1cn | |- 1 e. CC |
|
| 62 | pncan | |- ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> ( ( ( |_ ` A ) + 1 ) - 1 ) = ( |_ ` A ) ) |
|
| 63 | 60 61 62 | sylancl | |- ( A e. RR+ -> ( ( ( |_ ` A ) + 1 ) - 1 ) = ( |_ ` A ) ) |
| 64 | 63 | oveq2d | |- ( A e. RR+ -> ( 1 ... ( ( ( |_ ` A ) + 1 ) - 1 ) ) = ( 1 ... ( |_ ` A ) ) ) |
| 65 | 64 | sumeq1d | |- ( A e. RR+ -> sum_ m e. ( 1 ... ( ( ( |_ ` A ) + 1 ) - 1 ) ) ( 1 / m ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) |
| 66 | 65 | oveq1d | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( ( ( |_ ` A ) + 1 ) - 1 ) ) ( 1 / m ) + ( 1 / ( ( |_ ` A ) + 1 ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) + ( 1 / ( ( |_ ` A ) + 1 ) ) ) ) |
| 67 | 59 66 | eqtrd | |- ( A e. RR+ -> sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) + ( 1 / ( ( |_ ` A ) + 1 ) ) ) ) |
| 68 | 6 53 67 | mvrraddd | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( 1 / ( ( |_ ` A ) + 1 ) ) ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) |
| 69 | 68 | oveq1d | |- ( A e. RR+ -> ( ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( 1 / ( ( |_ ` A ) + 1 ) ) ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 70 | 54 69 | eqtrd | |- ( A e. RR+ -> ( ( sum_ m e. ( 1 ... ( ( |_ ` A ) + 1 ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) - ( 1 / ( ( |_ ` A ) + 1 ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 71 | 50 70 | breqtrd | |- ( A e. RR+ -> ( gamma - ( 1 / A ) ) <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 72 | logleb | |- ( ( A e. RR+ /\ ( ( |_ ` A ) + 1 ) e. RR+ ) -> ( A <_ ( ( |_ ` A ) + 1 ) <-> ( log ` A ) <_ ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
|
| 73 | 23 72 | mpdan | |- ( A e. RR+ -> ( A <_ ( ( |_ ` A ) + 1 ) <-> ( log ` A ) <_ ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 74 | 43 73 | mpbid | |- ( A e. RR+ -> ( log ` A ) <_ ( log ` ( ( |_ ` A ) + 1 ) ) ) |
| 75 | 7 25 5 74 | lesub2dd | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) ) |
| 76 | 17 26 27 71 75 | letrd | |- ( A e. RR+ -> ( gamma - ( 1 / A ) ) <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) ) |
| 77 | 27 15 | resubcld | |- ( A e. RR+ -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) - ( 1 / A ) ) e. RR ) |
| 78 | 15 | recnd | |- ( A e. RR+ -> ( 1 / A ) e. CC ) |
| 79 | 6 8 78 | subsub4d | |- ( A e. RR+ -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) - ( 1 / A ) ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + ( 1 / A ) ) ) ) |
| 80 | 7 15 | readdcld | |- ( A e. RR+ -> ( ( log ` A ) + ( 1 / A ) ) e. RR ) |
| 81 | id | |- ( A e. RR+ -> A e. RR+ ) |
|
| 82 | 23 81 | relogdivd | |- ( A e. RR+ -> ( log ` ( ( ( |_ ` A ) + 1 ) / A ) ) = ( ( log ` ( ( |_ ` A ) + 1 ) ) - ( log ` A ) ) ) |
| 83 | rerpdivcl | |- ( ( ( ( |_ ` A ) + 1 ) e. RR /\ A e. RR+ ) -> ( ( ( |_ ` A ) + 1 ) / A ) e. RR ) |
|
| 84 | 45 83 | mpancom | |- ( A e. RR+ -> ( ( ( |_ ` A ) + 1 ) / A ) e. RR ) |
| 85 | 37 | a1i | |- ( A e. RR+ -> 1 e. RR ) |
| 86 | 85 15 | readdcld | |- ( A e. RR+ -> ( 1 + ( 1 / A ) ) e. RR ) |
| 87 | 15 | reefcld | |- ( A e. RR+ -> ( exp ` ( 1 / A ) ) e. RR ) |
| 88 | 61 | a1i | |- ( A e. RR+ -> 1 e. CC ) |
| 89 | rpcnne0 | |- ( A e. RR+ -> ( A e. CC /\ A =/= 0 ) ) |
|
| 90 | divdir | |- ( ( ( |_ ` A ) e. CC /\ 1 e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( ( |_ ` A ) + 1 ) / A ) = ( ( ( |_ ` A ) / A ) + ( 1 / A ) ) ) |
|
| 91 | 60 88 89 90 | syl3anc | |- ( A e. RR+ -> ( ( ( |_ ` A ) + 1 ) / A ) = ( ( ( |_ ` A ) / A ) + ( 1 / A ) ) ) |
| 92 | reflcl | |- ( A e. RR -> ( |_ ` A ) e. RR ) |
|
| 93 | 41 92 | syl | |- ( A e. RR+ -> ( |_ ` A ) e. RR ) |
| 94 | rerpdivcl | |- ( ( ( |_ ` A ) e. RR /\ A e. RR+ ) -> ( ( |_ ` A ) / A ) e. RR ) |
|
| 95 | 93 94 | mpancom | |- ( A e. RR+ -> ( ( |_ ` A ) / A ) e. RR ) |
| 96 | flle | |- ( A e. RR -> ( |_ ` A ) <_ A ) |
|
| 97 | 41 96 | syl | |- ( A e. RR+ -> ( |_ ` A ) <_ A ) |
| 98 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 99 | 98 | mulridd | |- ( A e. RR+ -> ( A x. 1 ) = A ) |
| 100 | 97 99 | breqtrrd | |- ( A e. RR+ -> ( |_ ` A ) <_ ( A x. 1 ) ) |
| 101 | ledivmul | |- ( ( ( |_ ` A ) e. RR /\ 1 e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( ( |_ ` A ) / A ) <_ 1 <-> ( |_ ` A ) <_ ( A x. 1 ) ) ) |
|
| 102 | 93 85 44 101 | syl3anc | |- ( A e. RR+ -> ( ( ( |_ ` A ) / A ) <_ 1 <-> ( |_ ` A ) <_ ( A x. 1 ) ) ) |
| 103 | 100 102 | mpbird | |- ( A e. RR+ -> ( ( |_ ` A ) / A ) <_ 1 ) |
| 104 | 95 85 15 103 | leadd1dd | |- ( A e. RR+ -> ( ( ( |_ ` A ) / A ) + ( 1 / A ) ) <_ ( 1 + ( 1 / A ) ) ) |
| 105 | 91 104 | eqbrtrd | |- ( A e. RR+ -> ( ( ( |_ ` A ) + 1 ) / A ) <_ ( 1 + ( 1 / A ) ) ) |
| 106 | efgt1p | |- ( ( 1 / A ) e. RR+ -> ( 1 + ( 1 / A ) ) < ( exp ` ( 1 / A ) ) ) |
|
| 107 | 14 106 | syl | |- ( A e. RR+ -> ( 1 + ( 1 / A ) ) < ( exp ` ( 1 / A ) ) ) |
| 108 | 86 87 107 | ltled | |- ( A e. RR+ -> ( 1 + ( 1 / A ) ) <_ ( exp ` ( 1 / A ) ) ) |
| 109 | 84 86 87 105 108 | letrd | |- ( A e. RR+ -> ( ( ( |_ ` A ) + 1 ) / A ) <_ ( exp ` ( 1 / A ) ) ) |
| 110 | rpdivcl | |- ( ( ( ( |_ ` A ) + 1 ) e. RR+ /\ A e. RR+ ) -> ( ( ( |_ ` A ) + 1 ) / A ) e. RR+ ) |
|
| 111 | 23 110 | mpancom | |- ( A e. RR+ -> ( ( ( |_ ` A ) + 1 ) / A ) e. RR+ ) |
| 112 | 15 | rpefcld | |- ( A e. RR+ -> ( exp ` ( 1 / A ) ) e. RR+ ) |
| 113 | 111 112 | logled | |- ( A e. RR+ -> ( ( ( ( |_ ` A ) + 1 ) / A ) <_ ( exp ` ( 1 / A ) ) <-> ( log ` ( ( ( |_ ` A ) + 1 ) / A ) ) <_ ( log ` ( exp ` ( 1 / A ) ) ) ) ) |
| 114 | 109 113 | mpbid | |- ( A e. RR+ -> ( log ` ( ( ( |_ ` A ) + 1 ) / A ) ) <_ ( log ` ( exp ` ( 1 / A ) ) ) ) |
| 115 | 15 | relogefd | |- ( A e. RR+ -> ( log ` ( exp ` ( 1 / A ) ) ) = ( 1 / A ) ) |
| 116 | 114 115 | breqtrd | |- ( A e. RR+ -> ( log ` ( ( ( |_ ` A ) + 1 ) / A ) ) <_ ( 1 / A ) ) |
| 117 | 82 116 | eqbrtrrd | |- ( A e. RR+ -> ( ( log ` ( ( |_ ` A ) + 1 ) ) - ( log ` A ) ) <_ ( 1 / A ) ) |
| 118 | 25 7 15 | lesubadd2d | |- ( A e. RR+ -> ( ( ( log ` ( ( |_ ` A ) + 1 ) ) - ( log ` A ) ) <_ ( 1 / A ) <-> ( log ` ( ( |_ ` A ) + 1 ) ) <_ ( ( log ` A ) + ( 1 / A ) ) ) ) |
| 119 | 117 118 | mpbid | |- ( A e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) <_ ( ( log ` A ) + ( 1 / A ) ) ) |
| 120 | 25 80 5 119 | lesub2dd | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + ( 1 / A ) ) ) <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 121 | 79 120 | eqbrtrd | |- ( A e. RR+ -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) - ( 1 / A ) ) <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 122 | harmonicbnd3 | |- ( ( |_ ` A ) e. NN0 -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) ) |
|
| 123 | 20 122 | syl | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) ) |
| 124 | 0re | |- 0 e. RR |
|
| 125 | 124 9 | elicc2i | |- ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) <-> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. RR /\ 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) /\ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <_ gamma ) ) |
| 126 | 125 | simp3bi | |- ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <_ gamma ) |
| 127 | 123 126 | syl | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <_ gamma ) |
| 128 | 77 26 10 121 127 | letrd | |- ( A e. RR+ -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) - ( 1 / A ) ) <_ gamma ) |
| 129 | 27 15 10 | lesubaddd | |- ( A e. RR+ -> ( ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) - ( 1 / A ) ) <_ gamma <-> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) <_ ( gamma + ( 1 / A ) ) ) ) |
| 130 | 128 129 | mpbid | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) <_ ( gamma + ( 1 / A ) ) ) |
| 131 | 27 10 15 | absdifled | |- ( A e. RR+ -> ( ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) - gamma ) ) <_ ( 1 / A ) <-> ( ( gamma - ( 1 / A ) ) <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) /\ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) <_ ( gamma + ( 1 / A ) ) ) ) ) |
| 132 | 76 130 131 | mpbir2and | |- ( A e. RR+ -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` A ) ) - gamma ) ) <_ ( 1 / A ) ) |
| 133 | 13 132 | eqbrtrrd | |- ( A e. RR+ -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) <_ ( 1 / A ) ) |