This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harmonicbnd3 | |- ( N e. NN0 -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( 0 [,] gamma ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | 0re | |- 0 e. RR |
|
| 3 | emre | |- gamma e. RR |
|
| 4 | 2re | |- 2 e. RR |
|
| 5 | ere | |- _e e. RR |
|
| 6 | egt2lt3 | |- ( 2 < _e /\ _e < 3 ) |
|
| 7 | 6 | simpli | |- 2 < _e |
| 8 | 4 5 7 | ltleii | |- 2 <_ _e |
| 9 | 2rp | |- 2 e. RR+ |
|
| 10 | epr | |- _e e. RR+ |
|
| 11 | logleb | |- ( ( 2 e. RR+ /\ _e e. RR+ ) -> ( 2 <_ _e <-> ( log ` 2 ) <_ ( log ` _e ) ) ) |
|
| 12 | 9 10 11 | mp2an | |- ( 2 <_ _e <-> ( log ` 2 ) <_ ( log ` _e ) ) |
| 13 | 8 12 | mpbi | |- ( log ` 2 ) <_ ( log ` _e ) |
| 14 | loge | |- ( log ` _e ) = 1 |
|
| 15 | 13 14 | breqtri | |- ( log ` 2 ) <_ 1 |
| 16 | 1re | |- 1 e. RR |
|
| 17 | relogcl | |- ( 2 e. RR+ -> ( log ` 2 ) e. RR ) |
|
| 18 | 9 17 | ax-mp | |- ( log ` 2 ) e. RR |
| 19 | 16 18 | subge0i | |- ( 0 <_ ( 1 - ( log ` 2 ) ) <-> ( log ` 2 ) <_ 1 ) |
| 20 | 15 19 | mpbir | |- 0 <_ ( 1 - ( log ` 2 ) ) |
| 21 | 3 | leidi | |- gamma <_ gamma |
| 22 | iccss | |- ( ( ( 0 e. RR /\ gamma e. RR ) /\ ( 0 <_ ( 1 - ( log ` 2 ) ) /\ gamma <_ gamma ) ) -> ( ( 1 - ( log ` 2 ) ) [,] gamma ) C_ ( 0 [,] gamma ) ) |
|
| 23 | 2 3 20 21 22 | mp4an | |- ( ( 1 - ( log ` 2 ) ) [,] gamma ) C_ ( 0 [,] gamma ) |
| 24 | harmonicbnd2 | |- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
|
| 25 | 23 24 | sselid | |- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( 0 [,] gamma ) ) |
| 26 | oveq2 | |- ( N = 0 -> ( 1 ... N ) = ( 1 ... 0 ) ) |
|
| 27 | fz10 | |- ( 1 ... 0 ) = (/) |
|
| 28 | 26 27 | eqtrdi | |- ( N = 0 -> ( 1 ... N ) = (/) ) |
| 29 | 28 | sumeq1d | |- ( N = 0 -> sum_ m e. ( 1 ... N ) ( 1 / m ) = sum_ m e. (/) ( 1 / m ) ) |
| 30 | sum0 | |- sum_ m e. (/) ( 1 / m ) = 0 |
|
| 31 | 29 30 | eqtrdi | |- ( N = 0 -> sum_ m e. ( 1 ... N ) ( 1 / m ) = 0 ) |
| 32 | fv0p1e1 | |- ( N = 0 -> ( log ` ( N + 1 ) ) = ( log ` 1 ) ) |
|
| 33 | log1 | |- ( log ` 1 ) = 0 |
|
| 34 | 32 33 | eqtrdi | |- ( N = 0 -> ( log ` ( N + 1 ) ) = 0 ) |
| 35 | 31 34 | oveq12d | |- ( N = 0 -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) = ( 0 - 0 ) ) |
| 36 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 37 | 35 36 | eqtrdi | |- ( N = 0 -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) = 0 ) |
| 38 | 2 | leidi | |- 0 <_ 0 |
| 39 | emgt0 | |- 0 < gamma |
|
| 40 | 2 3 39 | ltleii | |- 0 <_ gamma |
| 41 | 2 3 | elicc2i | |- ( 0 e. ( 0 [,] gamma ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 <_ gamma ) ) |
| 42 | 2 38 40 41 | mpbir3an | |- 0 e. ( 0 [,] gamma ) |
| 43 | 37 42 | eqeltrdi | |- ( N = 0 -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( 0 [,] gamma ) ) |
| 44 | 25 43 | jaoi | |- ( ( N e. NN \/ N = 0 ) -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( 0 [,] gamma ) ) |
| 45 | 1 44 | sylbi | |- ( N e. NN0 -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. ( 0 [,] gamma ) ) |