This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efgt1p | |- ( A e. RR+ -> ( 1 + A ) < ( exp ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 2 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 3 | 0nn0 | |- 0 e. NN0 |
|
| 4 | 3 | a1i | |- ( A e. CC -> 0 e. NN0 ) |
| 5 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 6 | 0z | |- 0 e. ZZ |
|
| 7 | eqid | |- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 8 | 7 | eftval | |- ( 0 e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 0 ) = ( ( A ^ 0 ) / ( ! ` 0 ) ) ) |
| 9 | 3 8 | ax-mp | |- ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 0 ) = ( ( A ^ 0 ) / ( ! ` 0 ) ) |
| 10 | eft0val | |- ( A e. CC -> ( ( A ^ 0 ) / ( ! ` 0 ) ) = 1 ) |
|
| 11 | 9 10 | eqtrid | |- ( A e. CC -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 0 ) = 1 ) |
| 12 | 6 11 | seq1i | |- ( A e. CC -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 0 ) = 1 ) |
| 13 | 1nn0 | |- 1 e. NN0 |
|
| 14 | 7 | eftval | |- ( 1 e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 1 ) = ( ( A ^ 1 ) / ( ! ` 1 ) ) ) |
| 15 | 13 14 | ax-mp | |- ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 1 ) = ( ( A ^ 1 ) / ( ! ` 1 ) ) |
| 16 | fac1 | |- ( ! ` 1 ) = 1 |
|
| 17 | 16 | oveq2i | |- ( ( A ^ 1 ) / ( ! ` 1 ) ) = ( ( A ^ 1 ) / 1 ) |
| 18 | exp1 | |- ( A e. CC -> ( A ^ 1 ) = A ) |
|
| 19 | 18 | oveq1d | |- ( A e. CC -> ( ( A ^ 1 ) / 1 ) = ( A / 1 ) ) |
| 20 | div1 | |- ( A e. CC -> ( A / 1 ) = A ) |
|
| 21 | 19 20 | eqtrd | |- ( A e. CC -> ( ( A ^ 1 ) / 1 ) = A ) |
| 22 | 17 21 | eqtrid | |- ( A e. CC -> ( ( A ^ 1 ) / ( ! ` 1 ) ) = A ) |
| 23 | 15 22 | eqtrid | |- ( A e. CC -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` 1 ) = A ) |
| 24 | 2 4 5 12 23 | seqp1d | |- ( A e. CC -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 1 ) = ( 1 + A ) ) |
| 25 | 1 24 | syl | |- ( A e. RR+ -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 1 ) = ( 1 + A ) ) |
| 26 | id | |- ( A e. RR+ -> A e. RR+ ) |
|
| 27 | 13 | a1i | |- ( A e. RR+ -> 1 e. NN0 ) |
| 28 | 7 26 27 | effsumlt | |- ( A e. RR+ -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` 1 ) < ( exp ` A ) ) |
| 29 | 25 28 | eqbrtrrd | |- ( A e. RR+ -> ( 1 + A ) < ( exp ` A ) ) |