This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 9-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harmonicbnd | |- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) e. ( gamma [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
|
| 2 | 1 | sumeq1d | |- ( n = N -> sum_ m e. ( 1 ... n ) ( 1 / m ) = sum_ m e. ( 1 ... N ) ( 1 / m ) ) |
| 3 | fveq2 | |- ( n = N -> ( log ` n ) = ( log ` N ) ) |
|
| 4 | 2 3 | oveq12d | |- ( n = N -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
| 5 | 4 | eleq1d | |- ( n = N -> ( ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) e. ( gamma [,] 1 ) <-> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) e. ( gamma [,] 1 ) ) ) |
| 6 | eqid | |- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| 7 | eqid | |- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
|
| 8 | eqid | |- ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
|
| 9 | oveq2 | |- ( k = n -> ( 1 / k ) = ( 1 / n ) ) |
|
| 10 | 9 | oveq2d | |- ( k = n -> ( 1 + ( 1 / k ) ) = ( 1 + ( 1 / n ) ) ) |
| 11 | 10 | fveq2d | |- ( k = n -> ( log ` ( 1 + ( 1 / k ) ) ) = ( log ` ( 1 + ( 1 / n ) ) ) ) |
| 12 | 9 11 | oveq12d | |- ( k = n -> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) = ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
| 13 | 12 | cbvmptv | |- ( k e. NN |-> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
| 14 | 6 7 8 13 | emcllem7 | |- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) /\ ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) : NN --> ( gamma [,] 1 ) /\ ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
| 15 | 14 | simp2i | |- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) : NN --> ( gamma [,] 1 ) |
| 16 | 6 | fmpt | |- ( A. n e. NN ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) e. ( gamma [,] 1 ) <-> ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) : NN --> ( gamma [,] 1 ) ) |
| 17 | 15 16 | mpbir | |- A. n e. NN ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) e. ( gamma [,] 1 ) |
| 18 | 5 17 | vtoclri | |- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) e. ( gamma [,] 1 ) ) |