This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Natural logarithm preserves <_ . (Contributed by Stefan O'Rear, 19-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logleb | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logltb | |- ( ( B e. RR+ /\ A e. RR+ ) -> ( B < A <-> ( log ` B ) < ( log ` A ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( B < A <-> ( log ` B ) < ( log ` A ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( -. B < A <-> -. ( log ` B ) < ( log ` A ) ) ) |
| 4 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 5 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 6 | lenlt | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A <_ B <-> -. B < A ) ) |
| 8 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 9 | relogcl | |- ( B e. RR+ -> ( log ` B ) e. RR ) |
|
| 10 | lenlt | |- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( ( log ` A ) <_ ( log ` B ) <-> -. ( log ` B ) < ( log ` A ) ) ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( ( log ` A ) <_ ( log ` B ) <-> -. ( log ` B ) < ( log ` A ) ) ) |
| 12 | 3 7 11 | 3bitr4d | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |