This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The asymptotic behavior of sum_ m <_ A , 1 / m = log A + gamma + O ( 1 / A ) . (Contributed by Mario Carneiro, 14-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harmonicbnd4 | ⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) | |
| 2 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑚 ∈ ℕ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℕ ) |
| 4 | 3 | nnrecred | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 5 | 1 4 | fsumrecl | ⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ∈ ℂ ) |
| 7 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 8 | 7 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 9 | emre | ⊢ γ ∈ ℝ | |
| 10 | 9 | a1i | ⊢ ( 𝐴 ∈ ℝ+ → γ ∈ ℝ ) |
| 11 | 10 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → γ ∈ ℂ ) |
| 12 | 6 8 11 | subsub4d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − γ ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − γ ) ) = ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) |
| 14 | rpreccl | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ ) | |
| 15 | 14 | rpred | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ ) |
| 16 | resubcl | ⊢ ( ( γ ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( γ − ( 1 / 𝐴 ) ) ∈ ℝ ) | |
| 17 | 9 15 16 | sylancr | ⊢ ( 𝐴 ∈ ℝ+ → ( γ − ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 18 | rprege0 | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) | |
| 19 | flge0nn0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 20 | 18 19 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) |
| 21 | nn0p1nn | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℕ ) | |
| 22 | 20 21 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℕ ) |
| 23 | 22 | nnrpd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ+ ) |
| 24 | relogcl | ⊢ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) | |
| 25 | 23 24 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) |
| 26 | 5 25 | resubcld | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ) |
| 27 | 5 7 | resubcld | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 28 | 22 | nnrecred | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) |
| 29 | fzfid | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ Fin ) | |
| 30 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝑚 ∈ ℕ ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) → 𝑚 ∈ ℕ ) |
| 32 | 31 | nnrecred | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 33 | 29 32 | fsumrecl | ⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 34 | 33 25 | resubcld | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ) |
| 35 | harmonicbnd | ⊢ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( γ [,] 1 ) ) | |
| 36 | 22 35 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( γ [,] 1 ) ) |
| 37 | 1re | ⊢ 1 ∈ ℝ | |
| 38 | 9 37 | elicc2i | ⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( γ [,] 1 ) ↔ ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ∧ γ ≤ ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∧ ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ 1 ) ) |
| 39 | 38 | simp2bi | ⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( γ [,] 1 ) → γ ≤ ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 40 | 36 39 | syl | ⊢ ( 𝐴 ∈ ℝ+ → γ ≤ ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 41 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 42 | fllep1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) | |
| 43 | 41 42 | syl | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 44 | rpregt0 | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) | |
| 45 | 22 | nnred | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 46 | 22 | nngt0d | ⊢ ( 𝐴 ∈ ℝ+ → 0 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 47 | lerec | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) → ( 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( 1 / 𝐴 ) ) ) | |
| 48 | 44 45 46 47 | syl12anc | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( 1 / 𝐴 ) ) ) |
| 49 | 43 48 | mpbid | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( 1 / 𝐴 ) ) |
| 50 | 10 28 34 15 40 49 | le2subd | ⊢ ( 𝐴 ∈ ℝ+ → ( γ − ( 1 / 𝐴 ) ) ≤ ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 51 | 33 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) ∈ ℂ ) |
| 52 | 25 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℂ ) |
| 53 | 28 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℂ ) |
| 54 | 51 52 53 | sub32d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 55 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 56 | 22 55 | eleqtrdi | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 57 | 32 | recnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 58 | oveq2 | ⊢ ( 𝑚 = ( ( ⌊ ‘ 𝐴 ) + 1 ) → ( 1 / 𝑚 ) = ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) | |
| 59 | 56 57 58 | fsumm1 | ⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) = ( Σ 𝑚 ∈ ( 1 ... ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) ) ( 1 / 𝑚 ) + ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 60 | 20 | nn0cnd | ⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ∈ ℂ ) |
| 61 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 62 | pncan | ⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝐴 ) ) | |
| 63 | 60 61 62 | sylancl | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝐴 ) ) |
| 64 | 63 | oveq2d | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 ... ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) ) = ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 65 | 64 | sumeq1d | ⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) |
| 66 | 65 | oveq1d | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 1 ) ) ( 1 / 𝑚 ) + ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) + ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 67 | 59 66 | eqtrd | ⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) + ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 68 | 6 53 67 | mvrraddd | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) |
| 69 | 68 | oveq1d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 70 | 54 69 | eqtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) − ( 1 / ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 71 | 50 70 | breqtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( γ − ( 1 / 𝐴 ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 72 | logleb | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ+ ) → ( 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) | |
| 73 | 23 72 | mpdan | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 74 | 43 73 | mpbid | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 75 | 7 25 5 74 | lesub2dd | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ) |
| 76 | 17 26 27 71 75 | letrd | ⊢ ( 𝐴 ∈ ℝ+ → ( γ − ( 1 / 𝐴 ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ) |
| 77 | 27 15 | resubcld | ⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 78 | 15 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℂ ) |
| 79 | 6 8 78 | subsub4d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − ( 1 / 𝐴 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + ( 1 / 𝐴 ) ) ) ) |
| 80 | 7 15 | readdcld | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) + ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 81 | id | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+ ) | |
| 82 | 23 81 | relogdivd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ) = ( ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
| 83 | rerpdivcl | ⊢ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ∈ ℝ ) | |
| 84 | 45 83 | mpancom | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ∈ ℝ ) |
| 85 | 37 | a1i | ⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℝ ) |
| 86 | 85 15 | readdcld | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 87 | 15 | reefcld | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 88 | 61 | a1i | ⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℂ ) |
| 89 | rpcnne0 | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) | |
| 90 | divdir | ⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) = ( ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) + ( 1 / 𝐴 ) ) ) | |
| 91 | 60 88 89 90 | syl3anc | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) = ( ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) + ( 1 / 𝐴 ) ) ) |
| 92 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 93 | 41 92 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 94 | rerpdivcl | ⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) | |
| 95 | 93 94 | mpancom | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
| 96 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 97 | 41 96 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 98 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 99 | 98 | mulridd | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · 1 ) = 𝐴 ) |
| 100 | 97 99 | breqtrrd | ⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ≤ ( 𝐴 · 1 ) ) |
| 101 | ledivmul | ⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) ≤ 1 ↔ ( ⌊ ‘ 𝐴 ) ≤ ( 𝐴 · 1 ) ) ) | |
| 102 | 93 85 44 101 | syl3anc | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) ≤ 1 ↔ ( ⌊ ‘ 𝐴 ) ≤ ( 𝐴 · 1 ) ) ) |
| 103 | 100 102 | mpbird | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) ≤ 1 ) |
| 104 | 95 85 15 103 | leadd1dd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) / 𝐴 ) + ( 1 / 𝐴 ) ) ≤ ( 1 + ( 1 / 𝐴 ) ) ) |
| 105 | 91 104 | eqbrtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ≤ ( 1 + ( 1 / 𝐴 ) ) ) |
| 106 | efgt1p | ⊢ ( ( 1 / 𝐴 ) ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) < ( exp ‘ ( 1 / 𝐴 ) ) ) | |
| 107 | 14 106 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) < ( exp ‘ ( 1 / 𝐴 ) ) ) |
| 108 | 86 87 107 | ltled | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) |
| 109 | 84 86 87 105 108 | letrd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) |
| 110 | rpdivcl | ⊢ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ∈ ℝ+ ) | |
| 111 | 23 110 | mpancom | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ∈ ℝ+ ) |
| 112 | 15 | rpefcld | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / 𝐴 ) ) ∈ ℝ+ ) |
| 113 | 111 112 | logled | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ↔ ( log ‘ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ) ≤ ( log ‘ ( exp ‘ ( 1 / 𝐴 ) ) ) ) ) |
| 114 | 109 113 | mpbid | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ) ≤ ( log ‘ ( exp ‘ ( 1 / 𝐴 ) ) ) ) |
| 115 | 15 | relogefd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( 1 / 𝐴 ) ) ) = ( 1 / 𝐴 ) ) |
| 116 | 114 115 | breqtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) / 𝐴 ) ) ≤ ( 1 / 𝐴 ) ) |
| 117 | 82 116 | eqbrtrrd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) − ( log ‘ 𝐴 ) ) ≤ ( 1 / 𝐴 ) ) |
| 118 | 25 7 15 | lesubadd2d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) − ( log ‘ 𝐴 ) ) ≤ ( 1 / 𝐴 ) ↔ ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( log ‘ 𝐴 ) + ( 1 / 𝐴 ) ) ) ) |
| 119 | 117 118 | mpbid | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( log ‘ 𝐴 ) + ( 1 / 𝐴 ) ) ) |
| 120 | 25 80 5 119 | lesub2dd | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + ( 1 / 𝐴 ) ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 121 | 79 120 | eqbrtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − ( 1 / 𝐴 ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 122 | harmonicbnd3 | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ0 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ) | |
| 123 | 20 122 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
| 124 | 0re | ⊢ 0 ∈ ℝ | |
| 125 | 124 9 | elicc2i | ⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ↔ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ∧ 0 ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∧ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ γ ) ) |
| 126 | 125 | simp3bi | ⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ∈ ( 0 [,] γ ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ γ ) |
| 127 | 123 126 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ≤ γ ) |
| 128 | 77 26 10 121 127 | letrd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − ( 1 / 𝐴 ) ) ≤ γ ) |
| 129 | 27 15 10 | lesubaddd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − ( 1 / 𝐴 ) ) ≤ γ ↔ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ≤ ( γ + ( 1 / 𝐴 ) ) ) ) |
| 130 | 128 129 | mpbid | ⊢ ( 𝐴 ∈ ℝ+ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ≤ ( γ + ( 1 / 𝐴 ) ) ) |
| 131 | 27 10 15 | absdifled | ⊢ ( 𝐴 ∈ ℝ+ → ( ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − γ ) ) ≤ ( 1 / 𝐴 ) ↔ ( ( γ − ( 1 / 𝐴 ) ) ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ∧ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) ≤ ( γ + ( 1 / 𝐴 ) ) ) ) ) |
| 132 | 76 130 131 | mpbir2and | ⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ 𝐴 ) ) − γ ) ) ≤ ( 1 / 𝐴 ) ) |
| 133 | 13 132 | eqbrtrrd | ⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ) |